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Alternative Proof for the Localization of Sinai’s Walk

Pierre Andreoletti1−3
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We give an alternative proof of the localization of Sinai’s random walk in
random environment under weaker hypothesis than the ones used by Sinai.
Moreover, we give estimates that are stronger than the one of Sinai on the
localization neighborhood and on the probability for the random walk to stay
inside this neighborhood.

KEY WORDS: Random environment; random walk; Sinai’s regime; Markov
chain.

1. INTRODUCTION

Random Walks in Random Environment (R.W.R.E.) are basic processes
in random media. The one dimensional case with nearest neighbor jumps,
introduced by Solomon,(1) was first studied by Kesten et al.,(2) Sinai,(3)

Golosov(4,5) and Kesten(6) all these works show the diversity of the possi-
ble behaviors of such walks depending on hypothesis assumed for the envi-
ronment. At the end of the eighties Deheuvels and Révész(7) and Révész(8)

give the first almost sure behavior of the R.W.R.E. in the recurrent case.
Then we have to wait until the middle of the nineties to see new results.
An important part of these new results concerns the problem of large devi-
ations first studied by Greven and Hollander(9) and then by Zeitouni and
Gantert,(10) Pisztora and Povel,(11) Zeitouni et al.(12) and Comets et al.(13)

(see Zeitouni(14) for a review). In the same period using the stochastic cal-
culus for the recurrent case Shi,(15) Hu and Shi,(16,17) Hu(18,19) and Hu
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and Shi(20) follow the works of Schumacher(21) and Brox(22) to give very
precise results on the random walk and its local time (see Shi(23) for an
introduction). Moreover, recent results on the problem of aging are given
in Dembo et al.,(24) on the moderate deviations in Comets and Popov(25)

for the recurrent case, and on the local time in Gantert and Shi(26) for the
transient case. In parallel to all these results a continuous time model has
been studied, see for example Schumacher(21) and Brox,(22) the works of
Tanaka,(27) Mathieu,(28) Tanaka,(29) Tanaka and Kawazu,(30) Mathieu(31)

and Taleb.(32)

Since the beginning of the eighties the delicate case of R.W.R.E.
in dimension larger than 2 has been studied a lot, see for example
Kalikow,(33) Anshelevich et al.,(34) Durett,(35) Bouchaud et al.,(36) and
Bricmont and Kupianen.(37) For recent reviews (before 2002) on this top-
ics see the papers of Sznitman(38) and Zeitouni.(14) See also Sznitman,(39)

Varadhan,(40) Rassoul-Agha(41) and Zeitouni.(42)

In this paper we are interested in Sinai’s walk i.e the one dimensional
random walk in random environment with three conditions on the ran-
dom environment: two necessaries hypothesis to get a recurrent process
(see Solomon(1)) which is not a simple random walk and an hypothesis of
regularity which allows us to have a good control on the fluctuations of
the random environment.

The asymptotic behavior of such walk was discovered by Sinai,(3) he
showed that this process is sub-diffusive and that at time n it is local-
ized in the neighborhood of a well-defined point of the lattice. This point
of localization is a random variable depending only on the random envi-
ronment and n, its explicit limit distribution was given, independently, by
Kesten(6) and Golosov.(5)

Here we give an alternative proof of Sinai’s results under a weaker
hypothesis. First we recall an elementary method proving that for a given
instant n Sinai’s walk is trapped in a basic valley denoted {M̃ ′

0, m̃0, M̃0}
depending only on n and on a realization of the environment. Then
we give a proof of the localization, this proof is based on an analysis
of the return time to m̃0. We get a stronger result than Sinai: we find
that a size of the neighborhood of the localization depends on n like
(log2 n)9/2(log n)3/2 instead of δ(log n)2 found by Sinai. Moreover, we com-
pute the rates of the convergence of the probabilities (for the random
walk and the random environment). Our method is based on the classi-
fication of the valleys obtained by ordered refinement of the basic valley
{M̃ ′

0, m̃0, M̃0}. The properties of the valleys obtained by this operation are
proved with some details.

This paper is organized as follows. In Section 2 we describe the
model, we give some basic notions on the random environment and
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present the main results. In Section 3 we give the properties of the random
environment needed in Section 4 to prove the main results. In the Appen-
dix we make the proof of the properties of the random environment.

2. DESCRIPTION OF THE MODEL AND MAIN RESULTS

2.1. Sinai’s Random Walk Definition

Let α ≡ (αi, i ∈Z) be a sequence of i.i.d. random variables taking val-
ues in (0,1) defined on the probability space (�1,F1,Q), this sequence
will be called random environment. A random walk in random environ-
ment (denoted R.W.R.E.) (Xn, n ∈ N) is a sequence of random variable
taking value in Z, defined on (�,F,P) such that

• for every fixed environment α, (Xn, n∈N) is a Markov chain with
the following transition probabilities, for all i ∈Z

P
α [Xn = i +1|Xn−1 = i]=αi,

P
α [Xn = i −1|Xn−1 = i]=1−αi ≡βi. (2.1)

We denote by (�2,F2,P
α) the probability space associated to this Markov

chain.

• � = �1 × �2, ∀A1 ∈ F1 and ∀A2 ∈ F2, P [A1 ×A2] =∫
A1

Q(dw1)
∫
A2

P
α(w1)(dw2).

The probability measure P
α [ .|X0 =a] will be denoted P

α
a [.], the expecta-

tion associated to P
α
a : E

α
a , and the expectation associated to Q: EQ.

Now we introduce the hypothesis we use in all this work. Denoting
(εi = log[(1−αi)/αi ], i ∈Z), the two following hypothesis are the necessar-
ies hypothesis

EQ [ε0]=0, (2.2)

EQ

[
ε2

0

]
≡σ 2 >0. (2.3)

Solomon(1) shows that under (2.2) the process (Xn, n ∈ N) is P almost
surely null recurrent and (2.3) implies that the model is not reduced to
the simple random walk. In addition to (2.2) and (2.3) we will consider
the following hypothesis of regularity, there exists κ+ ∈ R

∗+ such that for
all κ ∈]0, κ+[

EQ [eκε0 ]<∞ and EQ

[
e−κε0
]
<∞. (2.4)
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We call Sinai’s random walk the random walk in random environment pre-
viously defined with the three hypothesis (2.2), (2.3) and (2.4).

Notice that Y. Sinai used the stronger hypothesis:

α0 � const>0, 1−α0 � const>0. (2.5)

The random potential and the valleys

Definition 2.1. The random potential (Sk, k ∈ R) associated to the
random environment α is defined by

Sk =
{∑

1� i � k εi, k =1,2, . . . ,∑
k � i �−1 εi, k =−1,−2, . . . ,

for the other k∈R�Z, (Sk, k) is defined by linear interpolation, and S0 =0.
We denote (Sn

t , t ∈R) the normalized potential associated to (Sk, k ∈R)

Sn
k = Sk

log n
, k ∈R. (2.6)

Definition 2.2. We will say that the triplet {M̃ ′, m̃, M̃ ′′} is a valley if

Sn

M̃ ′ = max
M̃ ′ � t � m̃

Sn
t , (2.7)

Sn

M̃ ′′ = max
m̃� t � M̃ ′′

Sn
t , (2.8)

Sn
m̃ = min

M̃ ′ � t � M̃ ′′
Sn

t . (2.9)

If m̃ is not unique, we choose the one with the smallest absolute value.

Definition 2.3. We will call depth of the valley {M̃ ′, m̃, M̃ ′′} and we
will denote d([M̃ ′, M̃ ′′]) the quantity

min(Sn

M̃ ′ −Sn
m̃, Sn

M̃ ′′ −Sn
m̃). (2.10)

Now we define the operation of refinement.

Definition 2.4. Let {M̃ ′, m̃, M̃ ′′} be a valley. Let M̃1 and m̃1 be such
that m̃ � M̃1 <m̃1 � M̃ ′′ and

Sn

M̃1
−Sn

m̃1
= max

m̃� t ′ � t ′′ � M̃ ′′
(Sn

t ′ −Sn
t ′′). (2.11)
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We say that the couple (M̃1, m̃1) is obtained by a right refinement of
{M̃ ′, m̃, M̃ ′′}. If the couple (m̃1, M̃1) is not unique, we will take the ones
such that m̃1 and M̃1 have the smallest absolute value. In a similar way,
we define the left refinement operation.

In all this work, we denote logp with p � 2 the p iterated logarithm
and we assume that n is large enough such that logp n is positive. Let γ >

0 a free parameter, denoting γ (n)= (γ log2 n)(log n)−1 we define what we
will call a valley containing 0 and of depth larger than 1+γ (n).

Definition 2.5. For γ >0 and n>3, we say that a valley {M̃ ′, m̃, M̃ ′′}
contains 0 and is of depth larger than 1+γ (n) if and only if

1. 0∈ [M̃ ′, M̃ ′′],

2. d
(
{M̃ ′, M̃ ′′}

)
� 1+γ (n) ,

3. if m̃<0, Sn

M̃ ′′ −maxm̃� t �0
(
Sn

t

)
� γ (n) ,

if m̃>0, Sn

M̃ ′ −max0� t � m̃

(
Sn

t

)
� γ (n) .

The basic valley {M̃ ′
0, m̃0, M̃0}

We recall the notion of basic valley, introduced by Y. Sinai and
denoted here {M̃ ′

0, m̃0, M̃0}. The definition we give is inspired by the work
of Kesten.(6) First, let {M̃ ′, m̃0, M̃

′′} be the smallest valley that contains 0
and of depth larger than 1 + γ (n). Here smallest means that if we con-
struct, with the operation of refinement, other valleys in {M̃ ′, m̃0, M̃

′′} such
valleys will not satisfy one of the properties of Definition 2.5. M̃ ′

0 and M̃0
are defined from m̃0 in the following way
if m̃0 >0

M̃ ′
0 = sup

{

l ∈Z−, l <m̃0, Sn
l −Sn

m̃0
� 1+γ (n), Sn

l − max
0� k � m̃0

Sn
k � γ (n)

}

,

(2.12)

M̃0 = inf
{
l ∈Z+, l >m̃0, Sn

l −Sn
m̃0

� 1+γ (n)
}

. (2.13)

If m̃0 <0

M̃ ′
0 = sup

{
l ∈Z−, l <m̃0, Sn

l −Sn
m̃0

� 1+γ (n)
}

, (2.14)

M̃0 = inf
{

l ∈Z+, l >m̃0, Sn
l −Sn

m̃0
� 1+γ (n), Sn

l − max
m̃0 � k �0

Sn
k � γ (n)

}

.

(2.15)



888 Andreoletti

If m̃0 =0

M̃ ′
0 = sup

{
l ∈Z−, l <0, Sn

l −Sn
m̃0

� 1+γ (n)
}

, (2.16)

M̃0 = inf
{
l ∈Z+, l >0, Sn

l −Sn
m̃0

� 1+γ (n)
}

. (2.17)

One can ask himself if the basic valley exists, in the Appendix A we prove
the following lemma:

Lemma 2.6. Assume (2.2), (2.3) and (2.4), for all γ >0 there exists
n0 ≡n0(γ, σ,E[|ε0|3]) such that for all n>n0

Q
[
{M̃ ′

0, m̃0, M̃0} �=∅

]
� 1− (6γ log2 n)(log n)−1. (2.18)

Remark 2.7. In all this paper we use the same notation n0 for an
integer that could change from line to line. Moreover, in the rest of the
paper we do not always make explicit the dependance on γ of all those
n0 even if Lemma 2.6 is constantly used.

2.2. Main Results: Localization Phenomena

The following result shows that Sinai’s random walk is sub-diffusive:

Proposition 2.8. There exists a strictly positive numerical constant
h>0, such that if (2.2) and (2.3) hold and for all κ ∈]0, κ+[ (2.4) hold,
for all γ > 2 there exists n0 ≡ n0(γ ) such that for all n > n0, there exists
Gn ⊂�1 with Q [Gn] � 1−h

(
(log3 n)(log2 n)−1

)1/2
and

sup
α∈Gn

{

P
α
0

[
n⋃

m=0

{
Xm /∈
[
M̃ ′

0, M̃0

]}
]}

� 2 log2 n

σ 2(log n)γ−2
, (2.19)

moreover

sup
α∈Gn

{

P
α
0

[
n⋃

m=0

{
Xm /∈
[
−(σ−1 log n)2 log2 n, (σ−1 log n)2 log2 n

]}
]}

� 2 log2 n

σ 2(log n)γ−2
. (2.20)
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Remark 2.9. A weaker form of this result can be found in the paper
of Sinai (Lemma 3 p. 261).(3) The set Gn is called set of “good” environ-
ments. We will define it precisely in Section 3. This set is defined by col-
lecting all the properties on the environment we need to prove our results.

Equation (2.19) shows that Sinai’s walk is trapped in the basic val-
ley {M̃ ′

0, m̃0, M̃0} which is random, depending only on the random media
and on n. More precisely, using (2.20), with an overwhelming probabil-
ity {M̃ ′

0, m̃0, M̃0} is within an interval centered at the origin and of size
2(σ−1 log n)2 log2 n. In all this work h is a strictly positive numerical con-
stant that can grow from line to line if needed.

The following remarkable result was proved by Sinai.(3)

Theorem 2.10. Assume (2.2), (2.3) and (2.5), for all ε > 0 and all
δ >0 there exists n0 ≡n0(ε, δ) such that for all n>n0, there exists Cn ⊂�1
with Q [Cn] � 1− ε and

lim
n→+∞ sup

α∈Gn

P
α
0

[∣∣
∣
∣

Xn

log2 n
−m0

∣
∣
∣
∣>δ

]

=0, (2.21)

m0 = m̃0(log n)−2.

In this paper we improve Sinai’s result in the following way, for all
κ ∈]0, κ+[ we denote γ0 = 12

κ
+ 21

2 ,

Theorem 2.11. There exists a strictly positive numerical constant
h>0, such that if (2.2) and (2.3) hold and for all κ ∈]0, κ+[ (2.4) hold,
for all γ > γ0 there exists n0 ≡ n0(γ ) such that for all n > n0, there exists
Gn ⊂�1 with Q [Gn] � 1−h

(
(log3 n)(log2 n)−1

)1/2
and

sup
α∈Gn

{

P
α
0

[∣
∣
∣
∣

Xn

log2 n
−m0

∣
∣
∣
∣>Gγ

(log2 n)9/2

(log n)1/2

]}

� 4(log2 n)9/2

σ 10(γ log n)γ−γ0
, (2.22)

m0 = m̃0(log n)−2 and G = (1600)2.

Remark 2.12. This result shows that, for a given instant n suffi-
ciently large, with a Q probability tending to one, Xn belongs to a neigh-
borhood of the point m̃0 with a P

α probability tending to one. The size of
this neighborhood is of order (log n)3/2(log2 n)9/2 that is negligible com-
paring to the typical range of Sinai’s walk of order (log n)2. Moreover, an
estimate on the rates of the convergence of these probabilities are given
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but we did not try any attempts to optimize these rates. However, if we
look for an annealed result, that means a result in P probability, we get

P

[∣
∣
∣
∣

Xn

log2 n
−m0

∣
∣
∣
∣>Gγ

(log2 n)9/2

(log n)1/2

]

� 2h

(
log3 n

log2 n

)1/2

(2.23)

and the rate in (log3 n)(log2 n)−1 cannot be improved to something like
(log n)−a with a > 0 without changing the size of the localization neigh-
borhood.

We recall that the explicit limit distribution of m0 was given indepen-
dently by Kesten(6) and Golosov.(5)

2.3. Ideas of the Proofs

In this section we describe in detail the structure of the paper and
give the main ideas of the proofs of Propositions 2.8 and Theorem 2.11.
For these proofs we need both arguments on the random environment and
arguments on the random walk.

Because of the technical aspect of the arguments on the environment,
we summarize the needed results on the environment in Section 3 and we
have put the proofs of these results in the Appendix at the end of the
paper. So assuming the results of Section 3, the proofs of the main results
are limited to the arguments for the walk given in Section 4.

Results on the random environment (Section 3). First we describe the
ordered chopping in valleys. According to this construction, based on the
refinement operation, we get a set of valleys with the two following main
properties: 1. The valleys of this set are ordered (in the sense of the
depth); 2. The depth of these valleys decrease when they get close to m̃0.
This construction is one of the important point to get estimations more
precise than Sinai’s ones, for the environment, and therefore for the walk.
We have collected all the needed properties of the valleys in a definition
(Definition 3.4). All the environments that satisfy this definition are called
good environment and we get the set of good environment (called Gn, n is
the time). The longest part of this work will be to prove that Q[Gn] satis-
fies the mentioned estimate, this is the purpose of the Appendix.

Arguments for the walk (Section 4). First, we recall basic results on birth
and death processes used all over the different proofs. We will always assume
that the random environments belong to the set of good environments.

The proof of Proposition 2.8 is based on a basic argument: with an
overwhelming probability, first the walk reach the bottom of the basic val-
ley m̃0 and then prefer returning n times to this point instead of climbing
until the top of the valley (i.e. reaching one of the points M̃ ′

0 or M̃0).
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Moreover, according to one of the properties of the good environments,
the size of the basic valley max{|M̃ ′

0|, |M̃0|} � (σ−1 log n)2 log2 n. So we get
the Proposition. We will see that to get this result we have used very few
properties of the good environments.

The proof of Theorem 2.11 is based on the two following facts: Fact
1: With an overwhelming probability, the last return to m̃0 before the
instant n, occurs at an instant larger than n − qn. qn is a function of n

given by log qn ≈ ((log n)3/2(log2 n)7/2)1/2. Fact 2: We use the same argu-
ment of the proof of Proposition 2.8. With an overwhelming probability,
starting from m̃0 with an amount of time n − (n − qn) = qn the walk is
trapped in a valley of size of order (log qn)

2 log2 qn ≈ (log n)3/2(log2 n)9/2.
This gives the Theorem.

The hardest part is to prove Fact 1, for this we use both an analysis
of the return time to m̃0 (Section 4.3) and the ordered chopping in val-
leys. The main idea is to prove that for each scale of time larger than qn,
the walk will return to m̃0 with an overwhelming probability. These scales
of time are chosen as function of the depth of the ordered valleys, i.e. for
each scale of time corresponds a valleys. What we prove is that for each
scale of time the walk can’t be trapped in the corresponding valley. Indeed,
starting from m̃0, if the walk has enough time to reach the bottom of a
valley it has enough time to escape from it and therefore to return to m̃0.

Arguments for the random environment (Appendix). While the proof of
the results for the random environment are technical we give some details.
This provide completeness to the present paper and shows the difficulties
to work with the hypothesis 2.4.

3. GOOD PROPERTIES OF A RANDOM ENVIRONMENT

In this section, we present different notions for the environment that
are used to prove the main results. We give a method to classify some val-
leys obtained from {M̃ ′

0, m̃0, M̃0} by the operation of refinement. To do
this we need some basic result on {M̃ ′

0, m̃0, M̃0}. Then we define the set of
the “good” environments, this set contains all the environments that sat-
isfy the needed properties to prove the main results.

3.1. Ordered Chopping in Valleys

Proposition 3.1. There exists h > 0 such that if 2.2, 2.3 and 2.4
hold, for all γ >0 there exists n0 ≡n0 (γ ) such that for all n>n0, we have

Q
[
M̃0 � (σ−1 log n)2 log2 n

]
� 1−h

(
(log3 n)(log2 n)−1

)1/2
, (3.1)
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Q
[
M̃ ′

0 � −(σ−1 log n)2 log2 n
]

� 1−h
(
(log3 n)(log2 n)−1

)1/2
. (3.2)

Before making a classification of the valleys we need to introduce the fol-
lowing notations, let γ >0 and n>3

bn = [(γ )1/2(log n log2 n)3/2], (3.3)

kn = ((σ−1 log n)2 log2 n)(bn)
−1, (3.4)

where [a] is the integer part of a∈R. Using 3.3 and 3.4 we construct a deter-
ministic chopping of the interval (−(σ−1 log n)2 log2 n, (σ−1 log n)2 log2 n)

into pieces of length bn. Moreover, we define:

ln =Dσ 2 log kn, D =1000. (3.5)

We make the following construction, let us take {M̃ ′
0, m̃0, M̃0} as the

initial valley (see Section 2.1). Let us denote M′
0 = {M̃ ′

0, m̃0} and M0 =
{m̃0, M̃0}.

First, we consider the first right refinement of the valley {M̃ ′
0, m̃0, M̃0}

we denote {M̃1, m̃1} the couple of maximizer and minimizer obtained
after this refinement, let us add this points to the set M0 to get M0 =
{m̃0, M̃1, m̃1, M̃0}. Now we consider the first refinement of {m̃0, M̃1}, we get
the couple {M̃2, m̃2} that we add to the set M0 and so on until we obtain
the points {M̃r , m̃r} such that M̃r−1 − m̃0 � lnbn and M̃r − m̃0 � lnbn. From
this construction (see Fig. 1) we obtain a set of maximizer and minimizer
(on the right of m̃0) M0 ≡

{
m̃0, M̃r , m̃r , . . . , M̃1, m̃1, M̃0

}
.

In the same way we construct the set M′
0 by making equivalent

refinement on the left of the valley {M̃ ′
0, m̃0, M̃0}. We make a first refine-

ment that gives the points {m̃′
1, M̃

′
1}, then we refine {M̃ ′

1, m̃0} and so on
until we obtain {m̃′

r ′ , M̃ ′
r ′ } such that m̃0 − M̃ ′

r ′−1 � bnln and m̃0 − M̃ ′
r ′ �

bnln (we denote M′
0 this set of maximizer and minimizer on the left of

m̃0). Finally we get a set of maximizer and minimizer M ≡ M′
0 ∪ M0 =

{M̃ ′
0, m̃

′
1, M̃

′
1, . . . , M̃ ′

r ′ , m̃0, M̃r , . . . , M̃1, m̃1, M̃0}.
We will use the following notations,

If 0 � i, j � r If 0 � i, j � r ′
δi,j =Sn

M̃i
−Sn

m̃j
, δ′

i,j =Sn

M̃ ′
i

−Sn
m̃′

j

,

ηi,j =Sn

M̃i
−Sn

M̃j
, η′

i,j =Sn

M̃ ′
i

−Sn

M̃ ′
j

,

µi,j =Sn
m̃i

−Sn
m̃j

. µ′
i,j =Sn

m̃′
i

−Sn
m̃′

j

.

(3.6)
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Fig. 1. Ordered chopping in valleys on the right hand side of m̃0.

The beauty of the refinement is that we get immediately the following rela-
tions between the random variables defined in 3.6.

δ0,0 >δ1,1 > · · ·>δr,r � 0, (3.7)

δ1,0 >δ2,1 > · · ·>δr,0 � 0, (3.8)

in the same way

δ′
0,0 >δ′

1,1 > · · ·>δ′
r,r � 0, (3.9)

δ′
1,0 >δ′

2,0 > · · ·>δ′
r ′,0 � 0, (3.10)

and

∀i, 0 � i � r −1, ηi,i+1 � 0, (3.11)

∀i, 0 � i � r ′ −1, η′
i,i+1 � 0. (3.12)

We remark that the construction we made is possible if and only if
m̃0 − M̃ ′

0 � bnln and M̃0 − m̃0 � lnbn, but this is true with probability very
near one, indeed the following lemma will be proved in the Appendix A.

Lemma 3.2. There exists h > 0 such that if (2.2), (2.3) and (2.4)
hold, for all γ >0 there exists n0 ≡n0 (γ ) such that for all n>n0, we have

Q
[
M̃0 − m̃0 � (log n)2(65σ 2 log2 n)−1

]
� 1−h

(
(log3 n)(log2 n)−1

)1/2

(3.13)
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Q
[
m̃0 − M̃ ′

0 � (log n)2(65σ 2 log2 n)−1
]

� 1−h
(
(log3 n)(log2 n)−1

)1/2
.

(3.14)

3.2. Definition of the Set of Good Environments

Before defining a good environment, we introduce the following ran-
dom variables, let γ >0 and n>3,

M̃< = sup
{
m∈Z, m<m̃0, Sn

m −Sn
m̃0

�
(
log(qn(log n)γ )

)
(log n)−1

}
,

(3.15)

M̃> = inf
{
m∈Z, m>m̃0, Sn

m −Sn
m̃0

�
(
log(qn(log n)γ )

)
(log n)−1

}
,

where qn = exp
{(

(200σ)2γ (log2 n)7/2(log n)3/2
)1/2
}

.

Remark 3.3. Proposition 2.8 shows that for the scale of time n,
Sinai’s walk is trapped in the basic valley {M̃ ′

0, m̃0, M̃0}. In the same way,
we will prove that starting from m̃0 with a scale of time qn, Sinai’s walk
is trapped in the valley {M̃<, m̃0, M̃>}. This argument will be used in the
proof of Theorem 2.11.

Now we can define what we call a good environment.

Definition 3.4. Let n > 3, κ ∈]0, k+[, γ > 0 and ω ∈ �1, we will
say that α ≡ α(ω) is a good environment if the sequence (αi, i ∈ Z) ≡
(αi(ω), i ∈Z) satisfies the properties (3.16)–(3.36)

• The valley {M̃ ′
0, m̃0, M̃0} exists: (3.16)

0∈ [M̃ ′
0, M̃0], (3.17)

δ0,0 � 1+γ (n), δ′
0,0 � 1+γ (n), (3.18)

If m̃0 >0, S
M̃ ′

0
− max

0�m� m̃0

(
Sn

m

)
� γ (n), (3.19)

if m̃0 <0, S
M̃0

− max
m̃0 �m�0

(
Sn

m

)
� γ (n). (3.20)

• max
M̃ ′

0 � l � M̃0

(
(αl)

−1
)

� (log n)
6
κ , (3.21)

max
M̃ ′

0 � l � M̃0

(
(βl)

−1
)

� (log n)
6
κ . (3.22)

• M̃0 � (σ−1 log n)2 log2 n,−M̃ ′
0 � (σ−1 log n)2 log2 n. (3.23)

• M̃< � m̃0 −Ln, M̃> � m̃0 +Ln. (3.24)

• r � 2(log n)1/2(γ log2 n)−1/2, (3.25)
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r ′ � 2(log n)1/2(γ log2 n)−1/2. (3.26)

• For all 0 � i � r −1

ηi,i+1 � γ (n), (3.27)

δi+1,i+1 � γ (n), (3.28)

µi+1,0 � γ (n). (3.29)

• For all 0 � i � r ′ −1

η′
i,i+1 � γ (n), (3.30)

δ′
i+1,i+1 � γ (n), (3.31)

µ′
i+1,0 � γ (n). (3.32)

• δ1,1 � 1−γ (n), (3.33)

δ′
1,1 � 1−γ (n). (3.34)

• δr,r � (log qn)(log n)−1, (3.35)

δ′
r ′,r ′ � (log qn)(log n)−1, (3.36)

where Ln = (8 log[(log n)γ qn]σ−1
)2

log2 n and recalling that qn = exp{(
(200σ)2γ (log2 n)7/2(log n)3/2

)1/2
}

, δ.,., δ′
.,., η.,., η′

.,., µ.,. and µ′
.,. are

given by 3.6 and γ (n)= (γ log2 n)(log n)−1.

We define the set of good environments Gn as

Gn ={ω∈�1, α(ω) is a “good” environment
}
. (3.37)

Remark 3.5. We remark that a good environment α is such that
the different random variables M̃0, M̃

′
0, m̃0, r, r ′, δ.,., δ

′
.,., µ.,. and µ′

.,. that
depends on α satisfy some properties in relation to deterministic parame-
ters like n, γ , σ and κ.

The properties (3.16)–(3.20) concern the existence of the basic valley
{M̃ ′

0, m̃0, M̃0} with his main properties.
The properties (3.21) and (3.22) are technical properties due to the

hypothesis 2.4. There is no equivalent properties in Sinai’s paper because
the stronger hypothesis 2.5 is used.

Equation (3.23) (respectively, (3.24)) give an upper bound of the dis-
tance between M̃ ′

0 and M̃0 (respectively M̃< and M̃>) and the origin
(respectively to the random point m̃0).

The properties from (3.25) to (3.36) concern the properties of the val-
leys obtained by the ordered chopping of {M̃ ′

0, m̃0, M̃0} effectuated in the
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previous paragraph. We remark that (3.25) and (3.26) give a determinis-
tic upper bound for the number of right (respectively left) refinement per-
formed in the ordered chopping in valleys, these upper bounds depend on
n. This n dependance that does not appear in Sinai’s work comes from the
fact that we perform a chopping in valleys in such a way that the succes-
sive valleys are nested and contain m̃0. This is a basic ingredient to get a
result stronger than Sinai’s one for the random walk itself.

Proposition 3.6. There exists h>0 such that if 2.2, 2.3 hold and for
all κ ∈]0, κ+[ 2.4 hold, for all γ >0, there exists n0 ≡n0(κ, γ ) such that for
all n>n0

Q [Gn] � 1−h
(
(log3 n)(log2 n)−1

)1/2
. (3.38)

Proof. The proof of this proposition is done in the Appendix A.
In fact n0 ≡n0(κ, γ, σ,E

[|ε0|3
]
,E
[
ε4

0

]
,C), where C =EQ [eκε0 ]∨EQ

[
e−κε0
]

but for simplicity we do not always make explicit the dependance on
σ, κ,E

[|ε0|3
]
,E
[
ε4

0

]
and C of n0.

4. PROOF OF THE MAIN RESULTS (PROPOSITION 2.8 AND

THEOREM 2.11)

4.1. Basic Results for Birth and Death Processes

For completeness we recall some results of Chung(43) on inhomoge-
neous discrete time birth and death processes, we will always assume that
α is fixed (denoted α ∈�1 in this work).

Let x, a and b in Z, a �=b, suppose X0 =a, denote

T a
b =
{

inf{k ∈N
∗, Xk =b},

+∞, if such a k not exists. (4.1)

Assume a <x <b, the two following lemmata can be found in Chung (pp.
73–76),(43) their proof follow from the method of difference equations.

Lemma 4.1. For all α ∈�1, we have

P
α
x

[
T x

a >T x
b

]=
∑x−1

i=a+1 exp
(
log n
(
Sn

i −Sn
a

))+1
∑b−1

i=a+1 exp
(
log n
(
Sn

i −Sn
a

))+1
, (4.2)

P
α
x

[
T x

a <T x
b

]=
∑b−1

i=x+1 exp
(
log n
(
Sn

i −Sn
b

))+1
∑b−1

i=a+1 exp
(
log n
(
Sn

i −Sn
b

))+1
. (4.3)
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Let us denote T x
a ∧T x

b the minimum between T x
a and T x

b .

Lemma 4.2. For all α ∈�1, we have

E
α
a+1

[
T a+1

a ∧T a+1
b

]
=
∑b−1

l=a+1
∑b−1

j=l
1
αl

Fn(j, l)
∑b−1

j=a+1 Fn(j, a)+1
, (4.4)

E
α
x

[
T x

a ∧T x
b

]=E
α
a+1

[
T a+1

a ∧T a+1
b

]


1+
x−1∑

j=a+1

Fn(j, a)





−
x−1∑

l=a+1

x−1∑

j=l

1
αl

Fn(j, l), (4.5)

where Fn(j, l)= exp
(

log n
(
Sn

j −Sn
l

))
.

4.2. Proof of the Sub-diffusive Behavior (Proposition 2.8)

Ideas of the proof. First, we prove that starting from 0 the probability
to hit m̃0 before one of the points M̃ ′

0 −1 or M̃0 +1 goes to 1 (Lemma 4.3)
and starting from m̃0 the probability of staying in the interval [M̃ ′

0, M̃0] in
a time n goes to 1 when n goes to infinity (Lemma 4.5).

In this section, we will always assume that m0 <0, (computations are
the same for the other case).

Lemma 4.3. There exists h> 0 such that if (2.2) and (2.3) hold and
for all κ ∈]0, κ+[ (2.4) holds, for all γ >2 there exists n0 ≡n0(γ, κ) such that
for all n>n0 there exists Gn ⊂�1 with Q [Gn] � 1−h

(
(log3 n)(log2 n)−1

)1/2

and for all α ∈Gn

P
α
0

[
T 0̃

m̃0
� T 0̃

M̃0+1

]
� σ−2(log2 n)(log n)−γ+2 + (n(log n)γ )−1. (4.6)

Proof. Assume γ >2, using Lemma 4.1 we easily get that

P
α
0

[
T 0̃

m̃0
� T 0̃

M̃0+1

]
� |m̃0| max

m̃0+1� i �−1

(
exp
(

− log n
(
Sn

M̃0
−Sn

i

)))+1

Using (3.20) and (3.23), we get (4.6).

Remark 4.4. By hypothesisM̃ ′
0 <m̃0 <0 thereforeP

α
[
T 0̃

m̃0
>T 0̃

M̃ ′
0−1

]
= 0.
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Lemma 4.5. There exists h> 0 such that if (2.2) and (2.3) hold and
for all κ ∈]0, κ+[ (2.4) holds, for all γ >2 there exists n0 ≡n0(γ, κ) such that
for all n>n0 there exists Gn ⊂�1 with Q [Gn] � 1−h

(
(log3 n)(log2 n)−1

)1/2

such that for all α ∈Gn we have

P
α
m̃0

[

T
m̃0

M̃ ′
0−1

∧T
m̃0

M̃0+1
>n

]

� 1− (log n)−γ , (4.7)

moreover

P
α
m̃0

[
T

m̃0
−[(σ−1 log n)2 log2 n]−1

∧T
m̃0
[(σ−1 log n)2 log2 n]+1

>n
]

� 1− (log n)−γ .

(4.8)

Proof. For all i � 2, define

T x→x
i =

{
inf{k >Ti−1, Xt =x},
+∞, if such k does not exist. (4.9)

T x→x
1 ≡T x→x =

{
inf{k ∈N

∗, Xk =x with X0 =x},
+∞, if such k does not exist. (4.10)

We denote τ1 = T x→x
1 and τi = T x→x

i − T x→x
i−1 , for all i � 2. Let n � 1,

remark that T
m̃0→m̃0
n ≡∑n

i=1 τ
m̃0→m̃0
i >n so

P
α
m̃0

[

T
m̃0

M̃ ′
0−1

∧T
m̃0

M̃0+1
>n

]

= P
α
m̃0

[

T
m̃0

M̃ ′
0−1

∧T
m̃0

M̃0+1
>n,

n∑

i=1

τ
m̃0→m̃0
i >n

]

(4.11)

� P
α
m̃0

[

T
m̃0

M̃ ′
0−1

∧T
m̃0

M̃0+1
>

n∑

i=1

τ
m̃0→m̃0
i

]

. (4.12)

By the strong Markov property the random variables (τi,1 � i � n) are
i.i.d therefore

P
α
m̃0

[

T
m̃0

M̃ ′
0−1

∧T
m̃0

M̃0+1
>

n∑

i=1

τ
m̃0→m̃0
i

]

=
(

P
α

[

T m̃0→m̃0 � T
m̃0

M̃ ′
0−1

∧T
m̃0

M̃0+1

])n

.

(4.13)
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Moreover, it is easy to check that

P
α
m̃0

[

T m̃0→m̃0 � T
m̃0

M̃ ′
0−1

∧T
m̃0

M̃0+1

]

= αm̃0P
α
m̃0+1

[
T

m̃0+1
M̃0+1

� T
m̃0+1
m̃0

]

+βm̃0P
α
m̃0−1

[

T
m̃0−1
M̃ ′

0−1
� T

m̃0−1
m̃0

]

.

(4.14)

Using (4.2) and (3.18), we get that there exists n0 ≡ n0(κ, γ ) such that
for all n>n0 and all α ∈Gn, P

α
m̃0+1

[
T

m̃0+1
M̃0+1

< T
m̃0+1
m̃0

]
� n−(1+γ (n)), in the

same way P
α
m̃0−1

[

T
m̃0−1
M̃ ′

0−1
<T

m̃0−1
m̃0

]

� n−(1+γ (n)). Using this and (4.14), we

get for n>n0 and all α ∈Gn

P
α
m̃0

[

T
m̃0

M̃ ′
0−1

∧T
m̃0

M̃0+1
<T m̃0→m̃0

]

� n−1−γ (n). (4.15)

Replacing (4.15) in (4.13) and using (4.12) and the fact (1−x)n � 1−
nx, for all 0 � x � 1 and all n � 1 we get (4.7). For (4.8) we use (4.7) and
(3.23).

Proof (of Proposition 2.8). By the strong Markov property and
Remark 4.4 we get that

P
α
0

[
n⋂

k=0

{
Xm ∈
[
M̃ ′

0, M̃0

]}
]

�P
α
m̃0

[

T
m̃0

M̃ ′
0−1

∧T
m̃0

M̃0+1
>n

]

−P
α
0

[
T 0̃

m̃0
>T 0̃

M̃0+1

]
.

(4.16)

Using Lemmata 4.3 and 4.5, we get (2.19). We get (2.20) using (2.19)
and (3.23).

The next lemma will be used for the proof of Theorem 2.11.
Lemma 4.6. There exists h>0, such that if (2.2) and (2.3) hold and

for all κ ∈]0, κ+[ (2.4) holds, for all γ >2 there exists n0 ≡n0(γ, κ) such that
for all n>n0 there exists Gn ⊂�1 with Q [Gn] � 1−h

(
(log3 n)(log2 n)−1

)1/2

and for all α ∈Gn we have

P
α
m̃0

[
T

m̃0
m̃0−Ln

∧T
m̃0
m̃0+Ln

>qn

]
� 1− (log n)−γ , (4.17)

where Ln and qn are given at the end of Definition 3.4.

Proof. Using what we did to prove Lemma 4.5 replacing M̃0 by M̃>

and M̃ ′
0 by M̃< (see (3.15) for the definitions of M̃> and M̃>), we easily

get this lemma.
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4.3. Analysis of the Return Time T m̃0→m̃0

It is easy to check that E
α
m̃0

[
T m̃0→m̃0

]= ∞ Q.a.s, however, we will
need an upper bound for the probability P

α
m̃0

[
T m̃0→m̃0 >k

]
with k >0. We

denote a ∨b=max(a, b).

Lemma 4.7. For all α∈�1 and all n>1, we have for all i, 0 � i � r

E
α
m̃0+1

[(
T

m̃0+1
m̃0

∧T
m̃0+1
M̃i+1

)2
]

� Din
(δi+1,i+1−ηi,i+1)∨0, (4.18)

with Di ≡Di(α,n)=|M̃i − m̃0|5
(

max
m̃0 � l � M̃i

(
1
αl

))2
, and for all i, 0 � i

� r ′

E
α
m̃0−1

[(

T
m̃0−1
m̃0

∧T
m̃0−1
M̃ ′

i−1

)2
]

� D′
in

(δ′
i+1,i+1−η′

i,i+1)∨0
, (4.19)

with D′
i ≡D′

i (α, n)=|M̃ ′
i − m̃0|5

(
max

M̃ ′
i � l � m̃0

(
1
βl

))2
. See 3.6 for the defi-

nitions of η′
i,i+1, δ′

i+1,i+1, ηi,i+1 and δi+1,i+1, recalling that r and r ′ are
(respectively) the number of right (respectively left) refinement (see Section
3.1).

Proof. We only prove (4.18) (the proof of (4.19) is identical). It is
easy to check, with the method of difference equations,

E
α
m̃0

[(
T

m̃0
m̃0+1 ∧T

m̃0

M̃i+1

)2
]

=
∑M̃i

l=m̃0+1

∑l
j=m̃0+1

2ul−1
αl

Fn(j, l)

∑M̃i

j=m̃0+1 Fn(j, m̃0)+1
, (4.20)

with

ul =E
α
l

[
T l

m̃0
∧T l

M̃i+1

]
, (4.21)

ul is given by (4.5) and Fn(., .) at the end of Lemma 4.2. First we give an
upper bound of (4.21). Denoting Ci ≡Ci(α, n)= max

m̃0 � l � M̃i

(
1
αl

)
(M̃i −

m̃0)
2 it is easy to check that ul � Ci

(
1+∑l−1

j=m̃0+1 Fn(j, m̃0)
)

. We have

M̃i∑

l=m̃0+1

l∑

j=m̃0+1

2ul −1
αl

Fn(j, l)
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Fig. 2. Two possible trajectories of the random potential and the associated (right)
refinements of {m̃0, M̃i}.

� 2Ci

M̃i∑

l=m̃0+1

l∑

j=m̃0+1



1+
l−1∑

i=m̃0+1

Fn(i, m̃0)



 (αl)
−1Fn(j, l).

(4.22)

Now let us consider the first refinement of {m̃0, M̃i}, denote m̃i+1
the minimizer obtained and M̃i+1 the maximizer, it is easy to check (see
Fig. 2) that

M̃i∑

l=m̃0+1

l∑

j=m̃0+1

(
1+∑l−1

i=m̃0+1 Fn(i, m̃0)
)

αl

Fn(j, l)

� |M̃i − m̃0|3
2

max
m̃0 � l � M̃i

(
1
αl

)

n(δi,0)∨(δi+1,0+δi+1,i+1), (4.23)

where δ.,. is given in (3.6). Using (4.22) and (4.23) we get

M̃i∑

l=m̃0+1

l∑

j=m̃0+1

2ul −1
αl

Fn(j, l) � Di ×n(δi,0)∨(δi+1,0+δi+1,i+1), (4.24)

where Di ≡Di(α,n)=|M̃i − m̃0|5
(

max
m̃0 � l � M̃i

(
1
αl

))2
.

Moreover, it is easy to check that
∑M̃i

j=m̃0+1 Fn(j, m̃0) � nδi,0 , replac-
ing this and (4.24) in (4.20) and noticing that δi+1,0 − δi,0 =−ηi,i+1 we get
(4.18).
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Proposition 4.8. For all α ∈�1, n> 1 and q > 0 we have, for all i,
0 � i � r

P
α
m̃0+1

[
T

m̃0+1
m̃0

>q
]

� (Din
(δi+1,i+1−ηi,i+1)∨0)q−2 +n−δi,0 , (4.25)

with Di =|M̃i − m̃0|5
(

max
m̃0 � l � M̃i

(
1
αl

))2
, and for all i, 0 � i � r ′

P
α
m̃0−1

[
T

m̃0−1
m̃0

>q
]

� (D′
in

(δ′
i+1,i+1−η′

i,i+1)∨0
)q−2 +n

−δ′
i,0 , (4.26)

with D′
i = |M̃ ′

i − m̃0|5
(

max
M̃ ′

i � l � m̃0

(
1
βl

))2
. See 3.6 for the definitions of

η′
i,i+1, δ′

i+1,i+1, ηi,i+1 and δi+1,i+1, recalling that r and r ′ are (respec-
tively) the number of right (respectively left) refinement (see Section (3.1)).

Remark 4.9. Equation (4.25) does not imply that P
α
m̃0+1

[
T

m̃0+1
m̃0

>q
]

is

sumable on q, indeed on the right hand side of 4.25, "n−δi,0 " does not depend
on q.

Proof (of Proposition 4.8). Let us estimate P
α
m̃0+1

[
T

m̃0+1
m̃0

>q
]
, let

0 � i � r, we have

P
α
m̃0

[
T

m̃0+1
m̃0

>q
]

� P
α
m̃0+1

[
T

m̃0+1
m̃0

∧T
m̃0+1
M̃i+1

>q
]

+P
α
m̃0+1

[
T

m̃0+1
m̃0

>T
m̃0+1
M̃i+1

]
. (4.27)

Using (4.3) and recalling that δi,0 =Sn

M̃i
−Sn

m̃0
we getP

α
m̃0+1

[
T

m̃0+1
m̃0

>T
m̃0+1
M̃i+1

]
�

n−δi,0 . Moreover, by Markov inequality we have P
α
m̃0+1

[
T

m̃0+1
m̃0

∧T
m̃0+1
M̃i+1

>q
]

�
(
E

α
m̃0+1

[(
T

m̃0+1
m̃0

∧T
m̃0+1
M̃i+1

)2])
q−2. To end the proof we use (4.18) (similar com-

putations give (4.26)).

4.4. Proof of Theorem 2.11

The sketch of the proof is the following we prove (with a probability
very near one) that (Xk)1� k �n hit m̃0 in a time smaller than n. Then we
show that it does not exist an instant 1 � k � n−qn (q(n) is given at the
end of Definition 3.4) such that the R.W.R.E. will not return to m̃0 (Prop-
osition 4.10). Finally, we prove that starting from m̃0, in a time smaller
than n− (n−qn)=qn the R.W.R.E. cannot escape from a region which size
is of order (log qn)

2 (Proposition 4.14).



Proof for the Localization of Sinai’s Walk 903

First we introduce the next event, let n>1 and 1 � q � n

Aq =
⋃

n−q � k �n

{Xk = m̃0} . (4.28)

Let δq >0, we have

P
α
0

[∣∣
∣
∣

Xn

(log n)2
−m0

∣
∣
∣
∣>δq

]

� P
α
0

[∣∣
∣
∣

Xn

(log n)2
−m0

∣
∣
∣
∣>δq, Aq

]

+P
α
0

[
Ac

q

]
.

(4.29)

Now we estimate each probability of the right hand side of (4.29) in Prop-
ositions 4.10 and 4.14.

Proposition 4.10. There exists h > 0 such that if (2.2) and (2.3)
hold and for all κ ∈]0, κ+[ (2.4) holds, for all γ > 12/κ + 21/2 there exists
n0 ≡ n0(γ, κ) such that for all n > n0 there exists Gn ⊂ �1 with Q [Gn] �
1−h
(
(log3 n)/(log2 n)

)1/2 and for all α ∈Gn

P
α
0

[
Ac

qn

]
� 2(log2 n)9/2

(γ )1/2(log n)γ−(12/κ+21/2)

+O
(

(log2)
2

(log n)γ−(6/κ+4)

)

, (4.30)

qn is given at the end of Definition 3.4.

Proof. First we remark that for all n>1 and all 1 � q � n

P
α
0

[
Ac

q

]
� P

α
0

[
T 0

m̃0
>n
]
+P

α
0

[
Ac

q, T 0
m̃0

� n
]

. (4.31)

We estimate each term of the right hand side of 4.31, the first one in
Lemma (4.11) and the second in Lemma 4.12.

Lemma 4.11. There exists h > 0 such that if (2.2) and (2.3) hold
and for all κ ∈]0, κ+[ (2.4) holds, for all γ > 6

κ
+ 4, there exists n′

1 ≡
n′

1(κ, γ ) such that for all n > n′
1 there exists Gn ⊂ �1 with Q [Gn] � 1 −

h
(
(log3 n)/(log2 n)

)1/2 and for all α ∈Gn, we have

P
α
0

[
T 0

m̃0
>n
]

� 5(log2 n)2

σ 4(log n)
γ−
(

6
κ
+4
) . (4.32)
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Proof. Let us consider the valley {M̃ ′
0, m̃0, M̃0}, we assume m̃0 > 0

(computations are similar if m̃0 � 0). We have

P
α
0

[
T 0

m̃0
>n
]

� P
α
0

[

T 0
m̃0

∧T 0
M̃ ′

0−1
>n

]

+P
α
0

[

T 0
M̃ ′

0−1
<T 0

m̃0

]

. (4.33)

For the second probability on the right hand side of (4.33) we have
already see (Lemma 4.3) that for all γ > 2 there exists n1 ≡ n1(κ, γ ) such
that for all n>n1 and all α ∈Gn

P
α
0

[

T 0
M̃ ′

0−1
<T 0

m̃0

]

� σ−2 log2 n(log n)−γ+2. (4.34)

For the first probability on the right hand side of (4.33) we have by
the Markov inequality

P
α
0

[

T 0
m̃0

∧T 0
M̃ ′

0−1
>n

]

� E0

[

T 0
m̃0

∧T 0
M̃ ′

0−1

]

n−1. (4.35)

To compute the mean in (4.35) we use Lemma 4.5, it is easy to check that:

E
α
0

[

T 0
M̃ ′

0−1
∧T 0

m̃0

]

�
m̃0−1∑

l=M̃ ′
0

m̃0−1∑

j=l

1
αl

Fn(j, l), (4.36)

where Fn(j, l) = exp
(

log n(Sn
l −Sn

j )
)

. Let us consider the first refinement

of {M̃ ′
0, m̃0}, it gives the point M̃ ′

1 (for the maximizer) and m̃′
1 (for the

minimizer), so we get

m̃0−1∑

l=M̃ ′
0

m̃0−1∑

j=l

1
αl

Fn(j, l) � C0n
δ′

1,1 , (4.37)

where δ′
1,1 ≡ Sn

M̃ ′
1
− Sn

m̃′
1

and C0 ≡C0(α, n)= (M̃ ′
0 − m̃0)

2 max
M̃ ′

0 � l � m̃0

(
1
αl

)
.

Using (4.37), (4.36) and (4.35) we get

P
α
0

[

T 0
m̃0

∧T 0
M̃ ′

0−1
>n

]

� (C0n
δ′

1,1)n−1. (4.38)
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Using formulas (3.21), (3.23) and (3.34) we get that for all γ > 6
κ

+4,
there exists n2 ≡n2(γ ) such that for all n>n2 and α ∈Gn

P
α
0

[

T 0
m̃0

∧T 0
M̃ ′

0
>n

]

� (2 log2 n)2

σ 4(log n)
γ−
(

6
κ
+4
) . (4.39)

We get (4.32) using (4.33), (4.34) and (4.39) and taking n′
1 =n1 ∨n2.

Lemma 4.12. There exists h > 0, such that if (2.2) and (2.3) hold
and for all κ ∈]0, κ+[ (2.4) holds, for all γ > 12/κ + 21/2 there exists n0 ≡
n0(γ, κ) such that for all n > n0 there exists Gn ⊂ �1 with Q [Gn] � 1 −
h
(
(log3 n)(log2 n)−1

)1/2
and for all α ∈Gn

P
α
0

[
Ac

qn
, T 0

m̃0
� n
]

� 3(log2 n)9/2

σ 10(γ )1/2(log n)γ−( 12
κ

+ 21
2 )

+O
(

1
(log n)γ−1/2(log2 n)1/2

)

(4.40)

qn is given at the end of Definition 3.4.

Proof. We recall that for all 1 � q � n we have denoted Ac
q =⋂

n−q � k �n {Xk �= m̃0}. Denoting

Āc
q =

⋃

1�p �n−q−1






{
Xp = m̃0

} n⋂

m=p+1

{Xm �= m̃0}




, (4.41)

we remark that
{
Ac

q, T 0
m̃0

� n
}

⊂ Āc
q . Therefore, we only have to give an

upper bound of P
α
0

[
Āc

q

]
, by the Markov property we have

P
α
0

[
Āc

q

]
=

∑

1�p �n−q−1

P
α
m̃0

[
n−p⋂

m=1

{Xm �= m̃0}
]

P
α
0

[
Xp = m̃0

]
. (4.42)

Using the change k =n−p, we get

P
α
0

[
Āc

q

]
�

∑

q+1� k �n−1

P
α
m̃0

[
k⋂

m=1

{Xm �= m̃0}
]

≡
∑

q+1� k �n−1

P
α
m̃0

[
T m̃0→m̃0 >k

]
. (4.43)
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Remark 4.13. We recall that R.W.R.E. is null recurrent P.a.s, so for
the moment, we can’t say anything on

∑
q+1� k �n−1 P

α
m̃0

[
T m̃0→m̃0 >k

]
.

First, let us decompose the sum in (4.43)

∑

q+1� k �n−1

P
α
m̃0

[
T m̃0→m̃0 >k

]
=
∑

q � k �n−2

αm̃0P
α
m̃0+1

[
T

m̃0+1
m̃0

>k
]

(4.44)

+
∑

q � k �n−2

βm̃0P
α
m̃0−1

[
T

m̃0−1
m̃0

>k
]
.

(4.45)

Let us give an upper bound to the sum on the right-hand side of (4.44).
We want to find q as small as possible but such that this sum goes to 0.
For this we use step by step the inequality (4.25) to P

α
m̃0+1

[
T

m̃0+1
m̃0

>k
]
: we

have

∑

[nδr,r ]+1� k �n−2

P
α
m̃0+1

[
T

m̃0+1
m̃0

>k
]

=
n−2∑

k=[nδ1,1 ]+1

P
α
m̃0+1

[
T

m̃0+1
m̃0

>k
]

(4.46)

+
r−1∑

i=1

[nδi,i ]∑

k=[nδi+1,i+1 ]+1

P
α
m̃0+1

[
T

m̃0+1
m̃0

>k
]
.

(4.47)

For the sum on the right hand side of (4.46), by inequality (4.25) (taking
i =0) we have

n−2∑

k=[nδ1,1 ]+1

P
α
m̃0

[
T

m̃0+1
m̃0

>k
]

� n−nδ1,1

nδ0,0
+

n∑

k=[nδ1,1 ]+1

D0n
(δ1,1−η0,1)∨0

k2
(4.48)

� n

nδ0,0
+ D0

nδ1,1∧η0,1
, (4.49)

where D0 =|M̃0 −m̃0|5
(

max
m̃0 � l � M̃0

(
1
αl

))2
. For the other terms (1 � i �

r −1) of the sum in (4.47), using the inequality (4.25) we have

[nδi,i ]∑

k=[nδi+1,i+1 ]+1

P
α
m̃0+1

[
T

m̃0+1
m̃0

>k
]

� nδi,i −nδi+1,i+1

nδi,0
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+
[nδi,i ]∑

k=[nδi+1,i+1 ]+1

Di(n
(δi+1,i+1−ηi,i+1)∨0

k2

(4.50)

� 1
nµi,0

+ Di

nδi+1,i+1∧ηi,i+1
, (4.51)

where we have used that δi,0 −δi,i =µi,0 and Di =|M̃i −m̃0|5
(

max
m̃0 � l � M̃i(

1
αl

))2
. So, for the sum (4.47) we get from (4.51) that

r−1∑

i=1

[nδi,i ]∑

k=[nδi+1,i+1 ]+1

P
α
m̃0+1

[
T

m̃0+1
m̃0

>k
]

�
r−1∑

i=1

1
nµi,0

+
r−1∑

i=1

Di

nδi+1,i+1∧ηi,i+1

(4.52)

� r −1

nmin1� i � r−1(µi,0)

+ (r −1)D0

nmin1� i � r−1(δi+1,i+1∧ηi,i+1)
,

(4.53)

and we have used that Di is decreasing in i. Collecting the terms (4.53)
and (4.49) we get

∑

[nδr,r ]+1� k �n−2

αm̃0P
α
m̃0+1

[
T

m̃0+1
m̃0

>k
]

� n

nδ0,0
+ r −1

nmin1� i � r−1(µi,0)

+ rD0

nmin0� i � r−1(δi+1,i+1∧ηi,i+1)
.

(4.54)

Now using the good properties (3.18), (3.21), (3.27)–(3.29), (3.23) and
(3.25) we easily get that for all γ > 12

κ
+ 21

2 , there exist n1 such that for all
n>n1, α ∈Gn,

∑

[nδr,r ]+1� k �n−2

αm̃0P
α
m̃0+1

[
T

m̃0+1
m̃0

>k −1
]

� 3(γ log2 n)9/2

σ 10(γ )1/2(log n)γ−( 12
κ

+ 21
2 )

.

(4.55)
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Finally, using (3.35) and therefore choosing q = [qn], where qn is given
at the end of Definition 3.4, we get that for all γ > 12

κ
+ 21

2 , n > n1 and
α ∈Gn

∑

q=[qn]� k �n−2

αm̃0P
α
m̃0+1

[
T

m̃0+1
m̃0

>k
]

�
∑

q=[nδr,r ]+1� k �n−2

αm̃0P
α
m̃0+1

[
T

m̃0+1
m̃0

>k
]

(4.56)

� 3(log2 n)9/2

σ 10(γ )1/2(log n)γ−( 12
κ

+ 21
2 )

.

(4.57)

Making similar computation for the sum on the right-hand side of (4.45)
one get the same upper bound with q = [qn]. Using these estimates, (4.45),
(4.44), (4.43) and the fact

{
Ac

q, T 0
m̃0

� n
}

⊂ Āc
q we get the lemma taking

q = [qn] and n′′
1 =n1.

We get Proposition 4.10 collecting the results of Lemmata 4.11, 4.12,
using 4.31 and taking n′

0 =n′
1 ∨n′′

1 and q = [qn].

Proposition 4.14. There exists h > 0, such that if (2.2) and (2.3)
hold and for all κ ∈]0, κ+[ (2.4) holds, for all γ > 0 there exists n0 ≡
n0(γ, κ) such that for all n > n0 there exists Gn ⊂ �1 with Q [Gn] � 1 −
h
(
(log3 n)(log2 n)−1

)1/2
and for all α ∈Gn

P
α
0

[∣∣
∣
∣

Xn

(log n)2
−m0

∣
∣
∣
∣>δqn, Aqn

]

� 1
(log n)γ

, (4.58)

δqn =Ln(log n)−2, qn and Ln are given at the of Definition 3.4.

Proof. Let us introduce the following stopping time
Tm̃0(q)= inf {l � n−q, Xl = m̃0}. We remark that Aq ⇔n− q � Tm̃0(q) �
n. Taking q = [qn], by the strong Markov property we have

P
α
0

[∣∣
∣
∣

Xn

(log n)2
−m0

∣
∣
∣
∣>δqn, A[qn]

]

=
n∑

l=n−[qn]

P
α
m̃0

[∣∣
∣
∣

Xn−l

(log n)2
−m0

∣
∣
∣
∣>δqn

]

P
α
0

[
Tm̃0(qn)= l

]
. (4.59)

Therefore we get

P
α
0

[∣∣
∣
∣

Xn

(log n)2
−m0

∣
∣
∣
∣>δqn, A[qn]

]
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�
qn∑

l=0

P
α
m̃0

[
T

m̃0
m̃0+Ln

∧T
m̃0
m̃0−Ln

<qn − l
]

P
α
0

[
Tm̃0(qn)= l

]
(4.60)

� P
α
m̃0

[
T

m̃0
m̃0+Ln

∧T
m̃0
m̃0−Ln

<qn

]
, (4.61)

Using Lemma 4.6 we get (4.58).
Now we end the proof of theorem 2.11.
Assume (2.2), (2.3) hold, let κ ∈]0, κ+[ such that (2.4) hold, let us

denote γ0 = 12
κ

+ 21
2 , let γ > γ0. Taking q = [qn] and δq = Ln(log n)−2 in

(4.29) we obtain from Propositions 4.10 and 4.14 that there exists n1 ≡
n1(κ, γ ) such that for all n>n1 and all α ∈Gn

P
α
0

[∣∣
∣
∣

Xn

(log n)2
−m0

∣
∣
∣
∣>δqn

]

� 3(log2 n)9/2

σ 10(γ )1/2(log n)γ−γ0

+O
(

1
(log n)γ−(6/κ+4)

)

, (4.62)

Moreover we remark that one can find n2 >n1 such that for all n>n2 we
have δqn ≡Ln(log n)−2 � γ (1600)2(log2 n)9/2(log n)−1/2.

APPENDIX A. PROOF OF THE GOOD PROPERTIES FOR THE

ENVIRONMENT (PROPOSITION 3.6)

In all this section we will use standard facts on sums of i.i.d. random
variables, these results are summarized in the Section B of this appendix.

Elementary results on the basic valley {M̃ ′
0, m̃0, M̃0}

We introduce the following stopping times, for a >0,

U+
a ≡U+

a (Sn
j , j ∈N)=

{
inf{m∈N

∗, Sn
m � a},

+∞, if such a m does not exist. (A.1)

U−
a ≡U−

a (Sn
j , j ∈N)=

{
inf{m∈N

∗, Sn
m � −a},

+∞, if such a m does not exist. (A.2)

Proof of Lemma 2.6. To prove this lemma it is enough to prove
that the valley {U−

1+γ (n)
, m̃,U+

1+γ (n)
} satisfies the three properties of Defi-

nition 2.5 with a probability very near 1. Let κ ∈]0, κ+[, and γ > 0. By
definition of U−

1+γ (n)
and U+

1+γ (n)
, {U−

1+γ (n)
, m̃,U+

1+γ (n)
} satisfies the two

first properties of Definition 2.5. We are left with the third property.
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Assume m̃ > 0, we remark that Sn

U−
1+γ (n)

− max0� t �m

(
Sn

t

)
� γ (n) ⇒

max0� t �m

(
Sn

t

)
� 1 moreover max0� t � m̃

(
Sn

t

)
� 1+γ (n) . Therefore

Q

[

Sn

U−
1+γ (n)

− max
0� t �m

(
Sn

t

)
� γ (n)

]

� Q

[

1 � max
0� t � m̃

(
Sn

t

)
� 1+γ (n)

]

.

(A.3)

Using (B.32) and Lemma (B.4), it is easy to prove that there exists
n1 ≡n1(γ, σ,E

[|ε0|3
]
) such that for all n>n1

Q
[
Sn

m̃ � −γ (n)
]

� 1− log2 n

log n

(

γ +O
(

1
log2 n

))

. (A.4)

Let us denote A={1 � max0� t � m̃

(
Sn

t

)
� 1+γ (n), Sn

m̃
� −γ (n)}, by

A.3 and A.4 we have

Q

[

Sn

U−
1+γ (n)

− max
0� t �m

(
Sn

t

)
� γ (n)

]

� Q [A]+ log2 n

log n

(

γ +O
(

1
log2 n

))

.(A.5)

Let us define

Wγ(n) =
{

inf{m∈N
∗, Sn

m ∈ [1,1+γ (n)]} ,

+∞, if such m does not exist. (A.6)

Denote A′ =⋃j>Wγ(n)

{
Sn

j � −γ (n),
⋂j

k=Wγ(n)+1

{
Sn

k <1+γ (n)
}}

, we

have A⊂A′ so Q [A] � Q
[A′]. Making a partition on the values of Wγ(n),

using that {Wγ(n) =r}⇒{Sn
r ∈ [1,1+γ (n)]} and the strong Markov property

we get

Q
[A′] � sup

1−γ (n)�x �1

(
Q
[
U−

γ (n)+x <U+
1+γ (n)−x

]) +∞∑

r=0

∫ 1+γ (n)

1
Q
[
Wγ(n) = r, Sn

r ∈dx
]

(A.7)

� Q
[
U−

1 <U+
2γ (n)

]
. (A.8)

Using Lemma B.4, we get that there exists n2 ≡ n2(σ,E[|ε0|3]) such
that for all n>n2

Q
[
U−

1 <U+
2γ (n)

]
� 2 log2 n

log n

(

γ +O

(
1

log2 n

))

. (A.9)

Collecting what we did above and taking n0 =n1 ∨n2 we get the lemma.
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Proof of Proposition 3.1. Let us prove 3.1, noticing that M̃0 �
U+

1+γ (n)
, and using remark (B.32), for all G>0 we get

Q
[
M̃0 >(σ−1 log n)2 log2 n

]
� Q
[
U+

1+γ (n)
∧U−

G >(σ−1 log n)2
]

+Q
[
U+

1 � U−
G

]
. (A.10)

Taking G =
(

2 log2 n

h2
1 log3 n

)1/2

with h1 > 0 and using (B.18), we get that there

exists n1 ≡n1(h1, σ,EQ

[|ε0|3
]
) such that for all n>n1

Q
[
U+

1+γ (n)
∧U−

G >E(log n)2
]

� 2q
h1
16 log3 n

1 , (A.11)

where q1 <0.7. Choosing correctly the numerical constant h1 we get for all
n>n1:

Q
[
U+

1+γ (n)
∧U−

G >(σ−1 log n)2 log2 n
]

� 1
log2 n

. (A.12)

Taking D = log n in (B.19) we get for all n>n1

Q
[
U+

1+γ (n)
� U−

G

]
� 1

G
+O
(

(log2 n)3/2

log n

)

. (A.13)

Using (A.10), (A.12), (A.13) and the expression of G we get 3.1, the proof
of 3.2 is similar.

We recall that for all κ ∈]0, κ+[, C ≡ C(κ) = EQ [eκε0 ] ∨ EQ

[
e−κε0
]
<

+∞.

Proof of Lemma 3.2. Denote

A0 =
{
M̃0 � (σ−1 log n)2 log2 n, M̃ ′

0 � −(σ−1 log n)2 log2 n
}

. (A.14)

Let un = [((log n)2)(65σ 2(log2 n))−1
]+ 1 and vn a sequence such that

un ×vn = [(σ−1 log n)2 log2 n]+1. Using 3.1 we know that there exists n′
0 ≡

n′
0

(
ε, σ,EQ

[
|ε0|3
])

such that for all n>n′
0

Q
[
M̃0 − m̃0 � un

]
� Q
[
M̃0 − m̃0 � un, A0

]
+h

(
log3 n

log2 n

)1/2

. (A.15)
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We recall that, in all this work, h is a strictly positive numerical con-
stant that can grow from line to line if needed. Let us denote Bn,σ =
{−[(σ−1 log n)2 log2 n] − 1, [(σ−1 log n)2 log2 n], . . . , [(σ−1 log n)2 log2 n] + 1},
by definition S

M̃0
−Sm̃0 � log n, so

Q
[
M̃0 − m̃0 � un, A0

]

� Q

[

max
m∈Bn,σ

max
m� l �m+un

max
m� j �m+un

(|Sl −Sj |
)

� log n

]

. (A.16)

Making similar computations to the ones did in the proof of B.4 we get
that there exists n1 ≡n1(σ,C, κ) such that for all n>n1,

Q

[

max
m∈Bn,σ

max
m� l �m+un

max
m� j �m+un

(|Sl −Sj |
)

� log n

]

� 4 log2 n

σ 2(log n)1/33
,

(A.17)

using (A.15), (A.16), (A.15) and taking n0 = n′
0 ∨ n1 we get 3.13. Similar

computations give 3.14.

The following result is essential to the proof of the other good prop-
erties.

Minimal distance between the two points of one refinement
(property 3.25)

Lemma A.1. There exists h>0 such that if (2.2), (2.3) hold and for
all κ ∈]0, κ+[ (2.4) holds, for all γ >0 there exists n0 ≡n0(σ, κ,E

[|ε0|3
]
,C, γ )

such that for all n>n0

Q




r ′
⋃

i=1

{
M̃ ′

i − m̃′
i � bn

}


 � h

(
log3 n

log2 n

)1/2

+O
(

log2 n

(log n)1/33

)

, (A.18)

Q

[
r⋃

i=1

{
M̃i − m̃i � bn

}
]

� h

(
log3 n

log2 n

)1/2

+O
(

log2 n

(log n)1/33

)

. (A.19)

bn is given in (3.3), M̃ ′
. , m̃′

. M̃. and m̃. have been defined Section 3.1.

Remark A.2. This lemma shows that the distance between two
points obtained by the operation of refinement is larger than bn.
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Proof. Let κ ∈]0, κ+[ and γ > 0. Recalling (3.4) and (3.5), let us
denote

A1 =
r ′
⋃

i=1

{
M̃ ′

i − m̃′
i � bn

}
, (A.20)

A2 =
[kn ]+1⋃

l=−[kn ]−1

[kn ]+1⋃

j=l+[ln ]

{

max
(l+1)bn �w<z� jbn

(Sz −Sw) � max
lbn �m� (j+1)bn

max
m�u<v �m+bn

(Sv −Su)

}

.

(A.21)

Denoting C1 =⋂r ′
j=0
⋃[kn]+1

l=−[kn]−1

{
M̃ ′

j ∈ [lbn, (l +1)bn]
}

and D1 =⋃r ′
i=1

⋃[kn]+1
l=−[kn]−1

{
M̃ ′

i − m̃′
i � bn, M̃ ′

i−1 ∈ [lbn, (l + 1)bn]
}

, it is clear that {A1,C1}⊂
{D1}. Now denoting C2 =⋂r ′−1

i=0

{
M̃ ′

i � m̃0 − lnbn

}
and D2 =⋃r ′

i=1
⋃[kn]+1

l=−[kn]−1{
M̃ ′

i − m̃′
i � bn, M̃ ′

i−1 ∈ [lbn, (l +1)bn], M̃ ′
i−1 � m̃0 − lnbn

}
, we easily get that

{D1,C2}⊂D2. Finally, denoting C3 =⋃[kn]+1
l=−[kn]−1 {m̃0 ∈ [lbn, (l +1)bn]}, D3 =

⋃r ′
i=1
⋃[kn]+1

l=−[kn]−1

⋃[kn]+1
j=l+[ln]

{
M̃ ′

i − m̃′
i � bn, M̃ ′

i−1 ∈ [lbn, (l + 1)bn],

m̃0 ∈ [bnj, bn(j +1)]} and noticing that
{
M̃ ′

i−1 � m̃0 − lnbn, M̃
′
i−1 ∈

[lbn, (l +1)bn]} ⊂ {m̃0 � lbn + lnbn}, we get that {D2,C3} ⊂ D3. Moreover, if
we make a refinement of {M̃i−1, m̃0}, we get the points M̃ ′

i and m̃′
i such that

S
M̃ ′

i
−Sm̃′

i
=max

M̃ ′
i−1 �w<z� m̃0

(Sz −Sw), so D3 ⊂A2. Therefore, we have:

Q[A1] � Q[A2]+Q[Cc
1]+Q[Cc

2]+Q[Cc
3]. (A.22)

It is easy to see that {Cc
1 ⊂ Ac

0}, {Cc
1 ⊂ Ac

0} and Cc
2 ⊂ {m̃0 − M̃ ′

0 �
(log n)2(65σ 2 log2 n)−1} so using Proposition 3.23 and Lemma 3.2 we have
some upper bounds for the three last probabilities of (A.22).
Now let us give an upper bound for Q[A2], first we introduce the follow-
ing event, let s >0

A3 = max
−([kn]+1)bn �m� ([kn]+1)bn

max
m� l �m+bn

max
m� j �m+bn

(∣∣Sl −Sj

∣
∣) � gn,

(A.23)

where gn = ((1+ s)32σ 2bn log kn)
1/2, we have

Q [A2] � Q [A2,A3]+Q
[
Ac

3

]
. (A.24)
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Applying inequality (B.4), (taking [L] + 1 = ([kn] + 1)bn and log K =
log(kn)) we get that there exists n1 ≡ n1(σ, s, κ,E

[|ε0|3,C
]
) such that for

all n>n1

Q
[
Ac

3

]
� 4bn

k
s
2
n

. (A.25)

We are left to estimate Q [A2,A3], we have

Q [A2,A3] �
[kn]+1∑

i=−[kn]−1

Q




[kn]+1⋃

j=i+[ln]

{

max
(i+1)bn �w<z� jbn

(Sz −Sw) � gn

}


 .

(A.26)

We remark that the event
{
maxibn �w<z� jbn (Sz −Sw) � gn

}
is decreasing

in j , so

Q [A2,A3] �
[kn]+1∑

i=−[kn]−1

Q

[

max
(i+1)bn �w<z� (i+[ln])bn

(Sz −Sw) � gn

]

.

(A.27)

Denoting (an, n∈ N
∗) and (dn, n∈ N

∗) two strictly positive increasing
sequence such that [ln]=dn ×an we get by independence

Q [A2,A3]=2([kn]+1)
(
Q
[
Sanbn � gn

])[dn]−1
. (A.28)

Now applying the Berry–Essen theorem to Q
[
Sanbn � gn

]
and choosing

dn =−2 (log(kn+2))

(log(
∫ +∞

1 e−x2
/(2π)1/2))

, we obtain that there exists n2 ≡n2(σ,EQ[|ε0|3])

such that for all n>n2

Q [A2,A3] � 2
kn

. (A.29)

Finally, taking s =4 and using (A.24), (A.25) and (A.29) we get that
there exists n3 ≡n3(σ, κ,EQ

[|ε0|3
]
,C, γ ) � n1 ∨n2 such that for all n>n3

Q [A2]=O
(

log2 n

log n

)1/2

. (A.30)

Collecting (A.22) and (A.30) we get (A.18). Similar computations give
(A.19).
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Corollary A.3. There exists h>0 such that if (2.2), (2.3) hold and for
all κ ∈]0, κ+[ (2.4) holds, for all γ >0 there exists n0 ≡n0(σ,E

[|ε0|3
]
,C, γ )

such that for all n>n0

Q
[
r ′ � 2kn +1

]
� 1−h

(
log3 n

log2 n

)1/2

−O
(

log2 n

(log n)1/33

)

, (A.31)

Q [r � 2kn +1] � 1−h

(
log3 n

log2 n

)1/2

−O
(

log2 n

(log n)1/33

)

. (A.32)

r and r ′ have been defined Section 3.1 and kn is given in (3.4).

Proof. This corollary is an easy consequence of Lemma A.1, the
proof is omitted.

Minimal distance between two maximums (properties (3.27) and
(3.30))

Proposition A.4. There exists h>0 such that if (2.2), (2.3) hold and
for all κ ∈]0, κ+[ (2.4) holds, there exists n0 ≡n0(σ, κ,E

[|ε0|3
]
,E
[
ε4

0

]
,C, γ )

such that for all n>n0

Q

[
r−1⋂

i=0

{
ηi,i+1 � γ (n)

}
]

� 1−h

(
log3 n

log2 n

)1/2

−O
(

1
log2 n

)

, (A.33)

Q




r ′−1⋂

i=0

{
η′

i,i+1 � γ (n)
}


 � 1−h

(
log3 n

log2 n

)1/2

−O
(

1
log2 n

)

, (A.34)

where γ (n) is given a the end of Definition 3.4, η.,. and η′
.,. are given in

(3.6).

Proof. Let us prove A.34. To prove this proposition we will use the
Lemma A.1. Let n> 3, and γ > 0, we recall the following notations bn =[
(γ )1/2(log n log2 n)3/2

]+1, kn = ((σ−1 log n)2 log2 n)/bn. Let us denote

A=
r ′
⋂

i=0

{
−(σ−1 log n)2 log2 n � M̃ ′

i � (σ−1 log n)2 log2 n
}

, (A.35)

A1 =
r ′
⋃

i=1

[kn]+1⋃

j=−[kn]−1

{
m′

i ∈ [bnj, bn(j +1)], M ′
i ∈ [bnj, bn(j +1)]

}
, (A.36)
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A2 =
r ′
⋃

i=1

[kn]+1⋃

j=−[kn]−1

{
M ′

i ∈ [bnj, bn(j +1)], M ′
i+1 ∈ [bnj, bn(j +1)]

}
,

(A.37)

A3 =
r ′−1⋃

i=0

{
0 � η′

i,i+1 � γ (n)
}
. (A.38)

We have Q[A3] � Q[A3,A
c
1,A] + Q[A1] + Q[Ac], moreover A ⊂ A0 (see

A.14) and A1 ⊂⋃r ′
i=1

{
M̃ ′

i − m̃′
i � bn

}
, therefore using Lemma (3.23) and

the inequality (A.18) we get that there exists h > 0 and n1 such that
for all n>n1, Q[A3] � Q[A3,A

c
1,A] +h((log2 n)/(log n))1/2. Let us denote

Li,j (n)=maxbni � k �bn(i+1)

(
Sn

k

)−maxbnj � l �bn(j+1)

(
Sn

l

)
, define

A4 =
[kn]+1⋃

i=−[kn]−1

[kn]+1⋃

j=i+1

{
0 � Li,j (n) � γ (n)

}
, (A.39)

by definition of the refinements we have M̃ ′
i <M̃ ′

i+1 and S
M̃ ′

i
>S

M̃ ′
i+1

,∀i 0 �
i � r ′ − 1, therefore {A3, Ac

2, A} ⊂ A4 then Q
[
A3, Ac

2, A
]

� Q [A4].
Finally, we get that for all n>n3

Q[A3] � Q[A4]+h((log2 n)/(log n))1/2 (A.40)

Denoting

A5 =
[kn]+1⋃

i=−[kn]−1

[kn]+1⋃

j=i+2

{
0 � Li,j (n) � γ (n)

}
, (A.41)

A6 =
[kn]+1⋃

i=−[kn]−1

{
0 � Li,i+1(n) � γ (n)

}
. (A.42)

we have that

Q [A4]=Q [A5]+Q [A6] . (A.43)

Now we estimate the two probability Q [A5] and Q [A6] in (respectively)
Lemma A.5 and A.6. For the proof of these lemmata we have used the
paper in preparation of Cassandro et al.(44)
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Lemma A.5. Assume (2.2), (2.3) and (2.4), for all γ >0 there exists
n′

0 ≡n′
0

(
σ, γ,E

[
ε4

0

])
such that for all n>n′

0

Q [A5] � 10
( π

σ 2

)1/2 γ log2 n

(bn)1/2 ([kn]+1)3/2 (A.44)

where kn is given by (3.4), bn by (3.3).

Proof. We have

Q [A5] �
[kn]+1∑

i=−[kn]−1

[kn]+1∑

j=i+2

Q
[{

0 � Li,j (n) � γ (n)
}]

. (A.45)

Now we give an upper bound for
∑[kn]+1

i=0

∑[kn]+1
j=i+2 Q

[{
0 � Li,j (n) � γ (n)

}]
.

Denoting Zi+1,j (n)=−∑bnj

l=bn(i+1)+1 εl and Y =−minibn � k � (i+1)bn

∑(i+1)bn

m=k

εm − maxjbn+1� k � (j+1)bn

∑k
m=jbn+1 εm, it is easy to see that for all i � 0,

Li,j (n)= (Zi+1,j (n)+Y )/(log n). Therefore we have

Q
[
0 � Li,j (n) � γ (n)

] =
∫

R

Q
[
0 � Zi+1,j (n)−y � γ (n) log n, Y ∈dy

]
.

(A.46)

Zi+1,j (n) and Y are independent so

∫

R

Q
[
0 � Zi+1,j (n)−y � γ (n) log n, Y ∈dy

]

� sup
y

(
Q
[
y � Zi+1,j (n) � γ (n) log n+y

])
. (A.47)

To estimate this last term we use the following concentration inequality
(see Lecam, pp. 401–413)(45)

sup
y

(
Q
[
y � Zi+1,j (n) � γ (n) log n+y

])
� 2(π)1/2

Z
, (A.48)

where Z2 ≡Z2(γ (n))=∑bn(j−i−1)

l=1 E
[
1∧H 2

s

]
, Hs = εs

l

γ (n) log n
and εs

l =εl −ε′
s ,

ε′
l is independent and identically distributed to εl . We have E

[
1∧ (Hs)

2
]
�
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(γ (n) log n)−2
E

[(
εs
l

)2
I1>Hs

]
. Noticing that E

[(
εs
l

)2
I1>Hs

]
= E

[(
εs
l

)2] −
E

[(
εs
l

)2
I1�Hs

]
we get by Schwarz inequality and Markov inequality

E

[(
εs
l

)2
I1>Hs

]
� 2σ 2 −

(

E

[(
εs
l

)4]1/2
(2σ 2)1/2

)

(γ log2 n)−1. (A.49)

We deduce that there exists n′
0 ≡n′

0

(
σ, γ,E

[
ε4

0

])
such that for all n>

n′
0, E

[
1∧ (Hs)

2
]

� 3σ 2/(2(γ (n) log n)2), therefore for all n>n′
0

Z �
√

3
2
σ 2

√
bn(j − i −1)

γ (n) log n
. (A.50)

Inserting (A.50) in (A.48) and using (A.47) and (A.46) we obtain for all
n>n′

0

Q
[
0 � Li,j (n) � γ (n)

]
�
(

8π

3σ 2

)1/2
γ (n) log n

(bn)1/2 (j − i −1)1/2
. (A.51)

Therefore, using (A.51) for all n>n′
0 we have

[kn]+1∑

i=0

[kn]+1∑

j=i+2

Q
[{

0 � Li,j (n) � γ (n)
}]

� 5
2

( π

σ 2

)1/2 γ log2 n

(bn)1/2 ([kn]+1)3/2 .

(A.52)

Making similar computations for the case i <0 we get a similar result, so
we get Lemma A.5.

Constraint on kn and bn. Now we can justify the choice for bn and kn,
recalling that kn ×bn = (σ−1 log n)2 log2 n we want that

( π

σ 2

)1/2 γ log2 n

(bn)1/2 ([kn]+1)3/2 , (A.53)

be close to 0 but bn small. Using that bn = [(γ )1/2(log n log2 n)3/2
]+1, we

get that there exists h1 ≡h1(σ, γ )>0 and n2 such that for all n>n2,

10
( π

σ 2

)1/2 γ log2 n

(bn)1/2 ([kn]+1)3/2 � h1

(
1

log2 n

)1/2

. (A.54)
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So using (A.54) and Lemma A.5, we get that there exists n′
1 ≡

n′
1(σ, γ,E[ε4

0 ]) � n′
0 ∨n2 such that for all n>n′

1

Q




[kn]+1⋃

i=−[kn]−1

[kn]+1⋃

j=i+2

{

max
bni � k �bn(i+1)

(
Sn

k

)− max
bnj � l �bn(j+1)

(
Sn

l

)
� γ (n)

}




� h1

(
1

log2 n

)1/2

. (A.55)

Now we prove the following lemma.

Lemma A.6. Assume (2.2), (2.3) hold and for all κ ∈]0, κ+[ (2.4)
holds, for all γ >0 there exists n′′

0 ≡n′′
0(σ,E

[|ε0|3
]
, E
[
ε4

0

]
,C, γ ) such that

for all n>n′′
0

Q [A6] � (2[kn]+3)(log2 n)5/2

(bn)1/2

(

2γ +
(

16π

3σ 2

)
γ

σ(log2 n)3/2

)

. (A.56)

Proof. We have

Q




[kn]+1⋃

i=−[kn]−1

{
0 � Li,i+1(n) � γ (n)

}


 �
[kn]+1∑

i=−[kn]−1

Q
[
0 � Li,i+1(n) � γ (n)

]
.

(A.57)

Using the fact that we can write maxbn(i+1)� l �bn(i+2)

(
Sn

l

) = X +
maxbn(i+1)+1� l �bn(i+2)

(∑l
l=bn(i+1)

)
with X ∈ σ

(
ε1, . . . , εbn(i+1)

)
and Y ≡

maxbni � k �bn(i+1)

(
Sn

k

)∈ σ
(
ε1, . . . , εbn(i+1)

)
we easily get by independence

that

Q
[
0 � Li,i+1(n) � γ (n)

]
� sup

x

(

Q

[

x � max
1� k �bn

(
Sn

k

)
� x +γ (n)

])

,

(A.58)

replacing this in (A.57), we get

Q




[kn]+1⋃

i=−[kn]−1

{
0 � Li,i+1(n) � γ (n)

}




� (2[kn]+3) sup
x

(

Q

[

x � max
1� k �bn

(
Sn

k

)
� x +γ (n)

])

. (A.59)
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To estimate supx

(
Q
[
x � max1� k �bn

(
Sn

k

)
� x +γ (n)

])
we remark that

Q

[

x � max
1� k �bn

(
Sn

k

)
� x +γ (n)

]

= Q
[
U+

x � bn � U+
x+γ (n)

]
(A.60)

= Q

[

U+
x � bn

2
, U+

x+γ (n) � bn

]

(A.61)

+Q

[
bn

2
<U+

x � bn � U+
x+γ (n)

]

.

(A.62)

We have to estimate the two probability in (A.61) and (A.62). We begin
with (A.62), we remark that

bn

2
<U+

x � bn � U+
x+γ (n) ⇒x � max

bn/2 � k �bn

(
Sn

k

)
� x +γ (n), (A.63)

from this we deduce by the concentration inequality (see equations (A.48)–
A.51) that there exists n3 ≡n3(σ,E

[
ε4

0

]
) such that for all n>n3

Q

[
bn

2
<U+

x � bn � U+
x+γ (n)

]

� sup
y

(
Q
[
y � Sn

bn/2 � y +γ (n)
])

�
(

16π

3σ 2

)1/2
γ log2 n

(bn)1/2
. (A.64)

Now we estimate the probability in (A.61), by the strong Markov
property we have

Q

[

U+
x � bn

2
, U+

x+γ (n) � bn

]

=
bn/2∑

l=0

∫ x+γ (n)

x

Q
[
U+

x = l, Sl ∈dy
]
Q
[

U+
x+γ (n)−y � bn − l

]
,

(A.65)

moreover x −y � 0, therefore Q
[

U+
x+γ (n)−y � bn − l

]
� Q
[

U+
γ (n) � bn − l

]
,

so we get

Q

[

U+
x � bn

2
, U+

x+γ (n) � bn

]

� Q
[

U+
γ (n) � bn/2

]
. (A.66)
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To estimate this probability we use Remark B.32 and Lemma B.4
(taking c = γ log2 n

log n
, a = (bn)1/2

log n(log2 n)3/2 , L = bn/2 and D = log n), we get that
there exists n4 such that for all n>n4

Q
[

U+
γ (n) � bn/2

]
� 2γ (log2 n)5/2

(bn)1/2
. (A.67)

Inserting (A.64) and (A.67) in (respectively) (A.61) and (A.62) and using
(A.59) we get for all n>n4

Q




[kn]+1⋃

i=−[kn]−1

{
0 � Li,i+1(n) � γ (n)

}




� (2[kn]+3)(log2 n)5/2

(bn)1/2

(

2γ +
(

16π

3σ 2

)
γ

σ(log2 n)3/2

)

, (A.68)

taking n′′
0 =n3 ∨n4 we get Lemma A.6 .

Recalling (3.3) and (3.4) we get from Lemma A.6, that for all κ ∈
]0, κ+[, γ >0 there exists n′′

1 ≡n′′
1(σ, κ,E

[|ε0|3
]
,E
[
ε4

0

]
,C, γ ) � n′′

0 such that
for all n>n′′

1

Q




[kn]+1⋃

i=−[kn]−1

{
0 � Li,i+1(n) � γ (n)

}


 = O
(

(log2 n)1+3/4

(log n)1/4

)

. (A.69)

To end the proof of Proposition A.4, we collect (A.69), (A.55), (A.43), and
finally (A.40), and we take n0 = n1 ∨ n′

1 ∨ n′′
1. We get (A.33) with similar

computations.

Minimal distance between the maximum and the minimum of one
refinement (properties (3.28) and (3.31))

Proposition A.7. There exists h>0 such that if (2.2), (2.3) hold and
for all κ ∈]0, κ+[ (2.4) holds, for all γ > 0 there exists
n0 ≡n0(σ,E

[|ε0|3
]
,E
[
ε4

0

]
,C, γ ) such that for all n>n0

Q

[
r−1⋂

i=0

{
δi+1,i+1 � γ (n)

}
]

� 1−h

(
log3 n

log2 n

)1/2

−O
(

1
log2 n

)

, (A.70)

Q




r ′−1⋂

i=0

{
δ′
i+1,i+1 � γ (n)

}


 � 1−h

(
log3 n

log2 n

)1/2

−O
(

1
log2 n

)

, (A.71)
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where γ (n) is given at the end of Definition 3.4, δ.,. and δ′
.,. are given in

(3.6).

Proof. First, we remark that by construction the event {δi+1,i+1 �
γ (n)} decrease in i, so Q

[⋂r−1
i=0

{
δi+1,i+1 � γ (n)

}]=Q
[
δr,r � γ (n)

]
, then

we use the same method used to prove Proposition A.4.

Minimal distance between a minimum and Sm̃0 (properties (3.29)
and (3.29))

Proposition A.8. There exists h > 0 such that if (2.2), (2.3) hold
and for all κ ∈]0, κ+[ (2.4) holds, for all γ > 0 there exists n0 ≡
n0(σ,E

[|ε0|3
]
,E
[
ε4

0

]
,C, γ ) such that for all n>n0

Q

[
r−1⋂

i=0

{
µi+1,0 � γ (n)

}
]

� 1−h

(
log3 n

log2 n

)1/2

−O
(

1
log2 n

)

, (A.72)

Q




r ′−1⋂

i=0

{
µ′

i+1,0 � γ (n)
}


 � 1−h

(
log3 n

log2 n

)1/2

−O
(

1
log2 n

)

,(A.73)

where γ (n) is given at the end of Definition 3.4, µ.,. and µ′
.,. are given in (3.6).

The proof of this proposition is similar to the proof of Proposition
A.4 and is omitted.

Control of the first and the last refinement (properties (3.33),
(3.34), (3.36) and (3.35))

Proposition A.9. There exists h > 0 such that if (2.2), (2.3) hold
and for all κ ∈]0, κ+[ (2.4) holds, for all γ > 0 there exists n0 ≡
n0(σ,E

[|ε0|3
]
,E
[
ε4

0

]
,C, γ ) such that for all n>n0

Q
[
δ1,1 � 1−γ (n)

]
� 1−h

(
log3 n

log2 n

)1/2

−O
(

1
log2 n

)

, (A.74)

Q
[
δ′

1,1 � 1−γ (n)
]

� 1−h

(
log3 n

log2 n

)1/2

−O
(

1
log2 n

)

, (A.75)
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Q
[
δr,r � (log(qn))(log n)−1

]
� 1−h

(
log3 n

log2 n

)1/2

−O
(

(log2 n)11/2

(log n)1/66

)

,

(A.76)

Q
[
δ′
r ′,r ′ � (log(qn))(log n)−1

]
� 1−h

(
log3 n

log2 n

)1/2

−O
(

(log2 n)11/2

(log n)1/66

)

,

(A.77)

where γ (n) and qn are given at the end of Definition 3.4.

Proof. Let us prove A.74, by construction δ1,1 � 1 + γ (n). So we
have to prove that the event −γ (n) � δ1,1 −1 � γ (n) has a probability very
near 0, to do this make we make use similar computations used to prove
Proposition A.4. A similar remark work for (A.75).

Let us prove A.76, by construction we have

M̃ ′
0 � M̃r � M̃0, (A.78)

M̃r − m̃0 � ln ×bn. (A.79)

Using (A.78) and Proposition 3.1, we know that there exists n1 ≡
n1

(
σ,E

[
|ε0|3
])

such that for all n>n1

Q
[
−(σ−1 log n)2 log2 n � M̃r � (σ−1 log n)2 log2 n

]

� 1−h
(
(log3 n)(log2 n)−1

)1/2
. (A.80)

Let us make the following chopping
[
(σ−1 log n)2 log2 n+1

] = b′
n × k′

n

with b′
n = [ln × bn] + 1, we have δr,0 � δr,r , therefore, denoting L′(n) =

max−b′
n×k′

n �m�b′
n×k′

n
maxm� j �m+b′

n
maxm� l �m+b′

n

(∣∣
∣Sn

l −Sn
j

∣
∣
∣
)

{−(σ−1 log n)2 log2 n � M̃r � (σ−1 log n)2 log2 n

and m̃0 − M̃r � ln ×bn.

}

⇒ δr,r � δr,0 � L′(n).

(A.81)

From this and (A.80) we deduce that for all n>n1 we have

Q
[
δr,r � L′(n)

]
� 1−h

(
(log3 n)(log2 n)−1

)1/2
. (A.82)
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Using (B.4) (with K =k′
n, [L]+1= [(σ−1 log n)2 log2 n]+1, B =b′

n and
s = 4) one can check that that there exists n2 ≡ n2

(
σ, s, κ,E

[
|ε0|3
]
,C
)

such that for all n>n2

Q
[
L′(n)>((1+ s)32σ 2b′

n log k′
n)

1/2
]

= O
(

(log2 n)11/2

(log n)1/66

)

. (A.83)

Using (A.82) and (A.83) we get that for all n>n2

Q
[
δr,r (log n) � (160σ 2b′

n log k′
n)

1/2
]

� 1−h
(
(log3 n)(log2 n)−1

)1/2

−O
(

(log2 n)11/2

(log n)1/66

)

. (A.84)

Moreover, we remark that there exists n3 ≡n3 (σ, s, κ) such that for all
n>n3

160σ 2b′
n log k′

n � (200σ)2(γ )1/2(log2 n)7/2(log n)3/2. (A.85)

We get (A.76), taking n0 = n1 ∨ n2 ∨ n3. Similar computations give the
result for δ′

r ′,r ′ .

Proof for the property (3.24)

Lemma A.10. There exists h > 0 such that if (2.2), (2.3) hold and
for all κ ∈]0, κ+[ (2.4) holds, for all γ >0 there exists n0 ≡n0(γ, σ,E

[|ε0|3
]
)

such that for all n>n0

Q
[
M̃> � m̃0 +Ln

]
� h

(
log3 n

log2 n

)1/2

, (A.86)

Q
[
M̃< � m̃0 −Ln

]
� h

(
log3 n

log2 n

)1/2

, (A.87)

see (3.15) for the definitions of M̃< and M̃> and Definition 3.4 for Ln one.

Proof. Denote f (n) = (log(qn(log n)γ ))/(log n), where qn is given at
the end od Definition 3.4, we have

Q
[
M̃> � m̃0 +Ln

]
≡ Q
[
inf
{
m>m̃0, Sn

m −Sn
m̃0

� f (n)
}

� m̃0 +Ln

]
,

(A.88)
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= Q
[
inf
{
m>m̃0, |Sn

m −Sn
m̃0

| � f (n)
}

� m̃0 +Ln

]
,

(A.89)

because m̃0 is a minimizer of the valley {M̃ ′
0, m̃0, M̃0} and by defini-

tion M̃0 � M>. Using Proposition 3.1, we know that there exists n1 ≡
n1

(
σ,E

[
|ε0|3
])

such that for all n>n1

Q
[
−(σ−1 log n)2 log2 n � m̃0 � (σ−1 log n)2 log2 n

]
� 1−h

(
log3 n

log2 n

)1/2

,

(A.90)

so for all n>n1

Q
[
inf
{
m>m̃0, |Sn

m −Sn
m̃0

| � f (n)
}

� m̃0 +Ln

]
(A.91)

�
[(σ−1 log n)2 log2 n]+1∑

k=−[(σ−1 log n)2 log2 n]−1

Q
[
inf
{
m>k, |Sn

m −Sn
k | � f (n)

}
� k +Ln

]

+h

(
log3 n

log2 n

)1/2

. (A.92)

We get that for all n>n1

Q
[
inf
{
m>m̃0, |Sn

m −Sn
m̃0

| � f (n)
}

� m̃0 +Ln

]

� 2([(σ−1 log n)2 log2 n]+1)Q
[
U−

f (n) ∧U+
f (n) � Ln

]
+h

(
log3 n

log2 n

)1/2

.

(A.93)

Applying inequality (B.18) we get that there exists n2 ≡ n2

(
σ,E

[
|ε0|3
])

such that for all n>n2

Q
[
U−

f (n) ∧U+
f (n) � Ln

]
=O
(

1
log n

)

. (A.94)

Replacing this in (A.93) and using (A.89), we get (A.86) taking n0 =n1 ∨
n2. The proof of (A.87) is similar.
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Proof of Proposition 3.6

We only have to collect the results of the Lemmata 2.6, B.3 and A.10,
of the Propositions 3.1, A.4, A.7, A.8 and A.9 and of the Corollary A.3.

APPENDIX B. STANDARD RESULTS ON SUMS OF I.I.D. RANDOM

VARIABLES

We recall that for all κ ∈]0, κ+[, C ≡C(κ)=EQ [eκε0 ]∨EQ

[
e−κε0
]
<+∞.

In this section we recall some elementary results on sums of i.i.d. ran-
dom variables satisfying the three hypothesis (2.2), (2.3) and (2.4). We will
always work on the right of the origin, that means with (Sm,m ∈ N), by
symmetry we obtain the same results for m∈Z−.

The following lemma is an immediate consequence of Bernstein
inequality (see Renyi(46)).

Lemma B.1. Assume (2.2), (2.3) hold and for all κ ∈]0, κ+[ (2.4)
holds. For all q >0 and p >0 such that q <(σ 2p)∧ (σ 4p/(2C)

)
we have

Q
[|Sp|>q

]
� 2 exp

{

− q2

2σ 2p

(

1− 2qC

σ 4p

)}

, (B.1)

For all p>1, s >0 and k>1 such that log k<(1+ s)32σ 2p, for all 0 � j �
p we have

Q

[∣
∣Sp −Sj

∣
∣>
(

32(1+ s)σ 2p log k
)1/2
]

� 2 exp

{

− log k + (p − j) log k

(1+ s)64p
+ (p − j)(log k)3/2C

((1+ s)32σ 2p)3/2

}

. (B.2)

The following lemma gives an upper bound to the largest fluctuation
of the potential (Sr , r ∈R) in a block of length B of a given interval.

Lemma B.2. Assume (2.2), (2.3) hold and for all κ ∈]0, κ+[ (2.4)
holds. For all s >0, all integers K >1 and B >1 such that log K <σ 2κ2B
we have

Q

[

max
−K−1� i �K

max
iB � j � (i+1)B

max
iB � l � (i+1)B

(∣∣Sl −Sj

∣
∣)>((1+ s)32σ 2B log K)1/2

]

� 2K−(s−O((log K)/B)1/2)
(
1+O (HK,B

))
. (B.3)
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where HK,B = K−(1−1/64−O((log K)/B)1/2). For all L > 1, K > 1, all integers
B > 1 such that [L] + 1 = K × B and all s > 0 such that log K < (1 +
s)32σ 2σ 2κ2B, we have

Q

[

max
−[L]−1�m� [L]+1

max
m� l �m+B

max
m� j �m+B

(∣∣Sl −Sj

∣
∣)>((1+ s)32σ 2B log K)1/2

]

� 2(B +1)K−(s−O((log K)/B)1/2)
(
1+O (HK,B

))
. (B.4)

Proof. Let us prove (B.3), let s > 0, K > 1 and B > 1 two positive
integers, denoting q = ((1 + s)32σ 2B log K)1/2. Using the fact that (αi, i ∈
Z) are i.i.d. we get

Q

[

max
−K−1� i �K

max
−iB � j � (i+1)B

max
iB � l � (i+1)B

(∣∣Sl −Sj

∣
∣)>q

]

� 1−
(

1−Q

[

2 max
1� j �B

(∣∣Sj

∣
∣)>q

])2K+2

. (B.5)

By Ottaviani inequality (see for example Breiman(47) p. 45)

Q

[

2 max
1� j �B

(∣∣Sj

∣
∣)>q

]

� Q [|SB |>q/4]

1− sup1� j �B

(
Q
[∣∣SB −Sj

∣
∣>q/4

]) . (B.6)

Using (B.1), we have

Q [|SB |>q/4] � 2 exp
{
− log K

(
1+ s −O ((log K)/B)1/2

)}
. (B.7)

Similarly, using (B.2), for all K >1 such that log K <(1+ s)32σ 2κ2B,
we have

sup
0� j �B

Q
[∣∣SB −Sj

∣
∣>q
]

� 2K−(1−1/64−O((log K)/B)1/2). (B.8)

Therefore, inserting (B.7) and (B.8) in (B.6) we get for all K >1 such
that log K <(1+ s)32σ 2κ2B

Q

[

2 max
1� j �B

(∣∣Sj

∣
∣)>((1+ s)32σ 2B log K)1/2

]

� 2K−(1+s−O((log K)/B)1/2)
(
1+O (HK,B

))
, (B.9)
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where HK,B =K−(1−1/64−O(log K/B)1/2). Inserting (B.9) in (B.5) and noticing
that (1−x)a � 1−ax for all 0 � x � 1 and a � 1 we get (B.3).

Now we prove (B.4), let L> 1, B > 1 an integer and K > 1 such that
[L]+1=K ×B, we have [K]×B � [L]+1 � ([K]+1)×B, we remark that

max
−[L]−1�m� [L]+1

max
m� l �m+B

max
m� j �m+B

(∣∣Sl −Sj

∣
∣) (B.10)

� max
0�q �B

max
−[K]−1� i � [K]−1

max
iB+q � l � (i+1)B+q

max
iB+q � j � (i+1)B+q

(∣∣Sl −Sj

∣
∣) ,

(B.11)

therefore we have

Q

[

max
−L�m�L

max
m� l �m+B

max
m� j �m+B

(∣∣Sl −Sj

∣
∣)>((1+ s)32σ 2B log K)1/2

]

(B.12)

� (B +1)×Q

[

max
−[K]−1� i � [K]−1

max
iB � l � (i+1)B

max
iB � j � (i+1)B

(∣∣Sl −Sj

∣
∣)

> ((1+ s)32σ 2B log K)1/2
]
. (B.13)

Using (B.3) we obtain (B.4).

Lemma B.3. Assume that for all κ ∈]0, k+[ (2.4) holds, for all inte-
ger L>0 and all D >0 we have

Q

[

max
−L� i �L

(βi/αi) � D6/κ

]

� 1−D−6(2L+1)EQ [eκε0 ] , (B.14)

Q

[

max
−L� i �L

(αi/βi) � D6/κ

]

� 1−D−6(2L+1)EQ

[
e−κε0
]
, (B.15)

moreover if D >21+κ/6

Q

[

max
−L� i �L

(1/αi) � D6/κ

]

� 1−D−62κ(2L+1)EQ [eκε0 ] , (B.16)

Q

[

max
−L� i �L

(1/βi) � D6/κ

]

� 1−D−62κ(2L+1)EQ

[
e−κε0
]
. (B.17)

Proof. This lemma is a simple consequence of the fact that the ran-
dom variables (αi, i ∈Z) are i.i.d.

Recalling (A.1) and (A.2), we have:
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Lemma B.4. Assume (2.2), (2.3), and (2.4). Let κ ∈]0, k+[, a>0, c>

0 and let us denote d =a∨c. There exists n0 ≡n0
(
σ,E
[ |ε0|3

])
such that for

all n>n0, L>
(2(d log n))2

σ 2 +1 and D >1 we have

Q
[
U−

a ∧U+
c >L

]
� 2q

Lσ2

(2(d log n))2+σ2

1 , (B.18)

Q
[
U−

a <U+
c

]
� 1

c+a

(

c+ Hd

log n

)

, (B.19)

Q
[
U−

a >U+
c

]
� 1

c+a

(

a + Hd

log n

)

. (B.20)

where q1 = 0.7 + 3,75EQ

[
|ε0|3
]

(d log n)σ 2 < 1 and Hd = (q

1
2

Lσ2

(2(d log n))2+σ2

1 )/(1 − q1) +
(6 log D)/κ + (L3/2(C)1/2σ)/D3.

Proof. We have

Q
[
U−

a ∧U+
c >L

]
� Q
[
U−

d ∧U+
d >L

]

= Q

[

max
0� l �L

|Sl |<(d log n)

]

. (B.21)

Let b=
[

(2(d log n))2

σ 2

]
+1, for all L>b there exists k ≡k(b,L) such that

k × b � L � b × (k + 1), let us denote [k] the integer part of k, we easily
get that

Q
[
U−

a ∧U+
c >L

]
�
(

Q

[∣∣
∣
∣

Sb

σb1/2

∣
∣
∣
∣<

2(d log n)

σb1/2

])[k]

. (B.22)

Now we use the Berry–Essen theorem (see Chow and Teicher, p. 299),(48)

we get

Q

[∣∣
∣
∣

Sb

σb1/2

∣
∣
∣
∣<

2(d log n)

σb1/2

]

� 2
∫ 1

0

e−x2

√
2π

dx + 3,75EQ

[|ε0|3
]

(d log n)σ 2
. (B.23)

Moreover, 2
∫ 1

0
e−x2
√

2π
dx < 0.7, therefore, using (B.22) and (B.23) we get

(B.18).
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To prove (B.19) we use Wald’s identity (see Neveu(49)) for the martin-
gale (Sn

t , t ∈ R) and the regular stopping time U = U−
a ∧ U+

c . Using that
EQ

[
Sn

U

]=0 and EQ

[(
Sn

U−
a

+a
)

IU−
a <U+

c

]
� 0 we get that

Q
[
U−

a <U+
c

]
� c

c+a
+ 1

c+a
EQ

[
(Sn

U+
c

− c)IU+
c �U−

a

]
. (B.24)

We have

EQ

[
(Sn

U+
c

− c)IU+
c �U−

a

]
= EQ

[
(Sn

U+
c

− c)IU+
c �U−

a ,U � [L]+1

]

+EQ

[
(Sn

U+
c

− c)IU+
c �U−

a ,U<[L]+1

]
. (B.25)

For the second term on the right-hand side of (B.25), noticing that
(Sn

i − c)IU+
c �U−

a ,U=i � εi

log n
IU+

c �U−
a ,U=i we have

EQ

[
(Sn

U+
c

− c)IU+
c �U−

a ,U<[L]+1

]
� 1

log n

[L]∑

i=1

EQ

[
(εi)IU+

c �U−
a ,U=i

]
.

(B.26)

For all D >1, we have

1
log n

[L]∑

i=1

EQ

[
(εi )IU+

c �U−
a ,U=i

]
= 1

log n

[L]∑

i=1

EQ

[
(εi )IU+

c �U−
a ,U=i,max1� j � [L](εj )� 6

κ log D

]

(B.27)

+ 1
log n

[L]∑

i=1

EQ

[
(εi )IU+

c �U−
a ,U=i,max1� j � [L](εj )> 6

κ log D

]

(B.28)

� 6 log D

κ log n
+ σ [L]

log n

(

Q

[

max
1� j � [L]

(
εj

)
>

6
κ

log D

])1/2

,

(B.29)

where we have used that for the sum in the right hand side of (B.27) the
εi are bounded by 6

κ
log D and for the sum (B.28) the Cauchy–Schwarz

inequality. To end we use (B.14), for all D >21+κ/6

EQ

[
(Sn

U+
c

− c)I
U+

c �U−
a ,U<[L]+1

]
� 6 log D

κ log n
+

σ([L])3/2
(

EQ

[

e
κ log
(

β0
α0

)])1/2

D3 log n
.

(B.30)
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For the first term of the right-hand side of (B.25), using Cauchy–Schwarz
inequality we get

EQ

[
(Sn

U+
c

− c)IU+
c �U−

a ,U � [L]+1

]
� σ

log n

∞∑

i=[L]+1

(Q [U � i])1/2 ,

(B.31)

then, to estimate, Q [U � i] we use (B.18). Collecting what we did above
we get (B.19).

Remark B.5. For all a >0, b>0 and l >0 we have

Q
[
U+

c > l
]

� Q
[
U+

c ∧U−
a > l
]+Q
[
U+

c >U−
a

]
. (B.32)
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49. J. Neveu, Martinguales à temps Discret (Masson et Cie 1972).


